1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015-2016 Reinhard Pfau <reinhard.pfau@gdsys.cc>
*/
#include <config.h>
#include <common.h>
#include <errno.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/efuse.h>
#include <asm/arch/soc.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/mbus.h>
#if defined(CONFIG_MVEBU_EFUSE_FAKE)
#define DRY_RUN
#else
#undef DRY_RUN
#endif
#define MBUS_EFUSE_BASE 0xF6000000
#define MBUS_EFUSE_SIZE BIT(20)
#define MVEBU_EFUSE_CONTROL (MVEBU_REGISTER(0xE4008))
enum {
MVEBU_EFUSE_CTRL_PROGRAM_ENABLE = (1 << 31),
};
struct mvebu_hd_efuse {
u32 bits_31_0;
u32 bits_63_32;
u32 bit64;
u32 reserved0;
};
#ifndef DRY_RUN
static struct mvebu_hd_efuse *efuses =
(struct mvebu_hd_efuse *)(MBUS_EFUSE_BASE + 0xF9000);
#else
static struct mvebu_hd_efuse efuses[EFUSE_LINE_MAX + 1];
#endif
static int efuse_initialised;
static struct mvebu_hd_efuse *get_efuse_line(int nr)
{
if (nr < 0 || nr > 63 || !efuse_initialised)
return NULL;
return efuses + nr;
}
static void enable_efuse_program(void)
{
#ifndef DRY_RUN
setbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
#endif
}
static void disable_efuse_program(void)
{
#ifndef DRY_RUN
clrbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
#endif
}
static int do_prog_efuse(struct mvebu_hd_efuse *efuse,
struct efuse_val *new_val, u32 mask0, u32 mask1)
{
struct efuse_val val;
val.dwords.d[0] = readl(&efuse->bits_31_0);
val.dwords.d[1] = readl(&efuse->bits_63_32);
val.lock = readl(&efuse->bit64);
if (val.lock & 1)
return -EPERM;
val.dwords.d[0] |= (new_val->dwords.d[0] & mask0);
val.dwords.d[1] |= (new_val->dwords.d[1] & mask1);
val.lock |= new_val->lock;
writel(val.dwords.d[0], &efuse->bits_31_0);
mdelay(1);
writel(val.dwords.d[1], &efuse->bits_63_32);
mdelay(1);
writel(val.lock, &efuse->bit64);
mdelay(5);
return 0;
}
static int prog_efuse(int nr, struct efuse_val *new_val, u32 mask0, u32 mask1)
{
struct mvebu_hd_efuse *efuse;
int res = 0;
res = mvebu_efuse_init_hw();
if (res)
return res;
efuse = get_efuse_line(nr);
if (!efuse)
return -ENODEV;
if (!new_val)
return -EINVAL;
/* only write a fuse line with lock bit */
if (!new_val->lock)
return -EINVAL;
/* according to specs ECC protection bits must be 0 on write */
if (new_val->bytes.d[7] & 0xFE)
return -EINVAL;
if (!new_val->dwords.d[0] && !new_val->dwords.d[1] && (mask0 | mask1))
return 0;
enable_efuse_program();
res = do_prog_efuse(efuse, new_val, mask0, mask1);
disable_efuse_program();
return res;
}
int mvebu_efuse_init_hw(void)
{
int ret;
if (efuse_initialised)
return 0;
ret = mvebu_mbus_add_window_by_id(
CPU_TARGET_SATA23_DFX, 0xA, MBUS_EFUSE_BASE, MBUS_EFUSE_SIZE);
if (ret)
return ret;
efuse_initialised = 1;
return 0;
}
int mvebu_read_efuse(int nr, struct efuse_val *val)
{
struct mvebu_hd_efuse *efuse;
int res;
res = mvebu_efuse_init_hw();
if (res)
return res;
efuse = get_efuse_line(nr);
if (!efuse)
return -ENODEV;
if (!val)
return -EINVAL;
val->dwords.d[0] = readl(&efuse->bits_31_0);
val->dwords.d[1] = readl(&efuse->bits_63_32);
val->lock = readl(&efuse->bit64);
return 0;
}
int mvebu_write_efuse(int nr, struct efuse_val *val)
{
return prog_efuse(nr, val, ~0, ~0);
}
int mvebu_lock_efuse(int nr)
{
struct efuse_val val = {
.lock = 1,
};
return prog_efuse(nr, &val, 0, 0);
}
/*
* wrapper funcs providing the fuse API
*
* we use the following mapping:
* "bank" -> eFuse line
* "word" -> 0: bits 0-31
* 1: bits 32-63
* 2: bit 64 (lock)
*/
static struct efuse_val prog_val;
static int valid_prog_words;
int fuse_read(u32 bank, u32 word, u32 *val)
{
struct efuse_val fuse_line;
int res;
if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
return -EINVAL;
res = mvebu_read_efuse(bank, &fuse_line);
if (res)
return res;
if (word < 2)
*val = fuse_line.dwords.d[word];
else
*val = fuse_line.lock;
return res;
}
int fuse_sense(u32 bank, u32 word, u32 *val)
{
/* not supported */
return -ENOSYS;
}
int fuse_prog(u32 bank, u32 word, u32 val)
{
int res = 0;
/*
* NOTE: Fuse line should be written as whole.
* So how can we do that with this API?
* For now: remember values for word == 0 and word == 1 and write the
* whole line when word == 2.
* This implies that we always require all 3 fuse prog cmds (one for
* for each word) to write a single fuse line.
* Exception is a single write to word 2 which will lock the fuse line.
*
* Hope that will be OK.
*/
if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
return -EINVAL;
if (word < 2) {
prog_val.dwords.d[word] = val;
valid_prog_words |= (1 << word);
} else if ((valid_prog_words & 3) == 0 && val) {
res = mvebu_lock_efuse(bank);
valid_prog_words = 0;
} else if ((valid_prog_words & 3) != 3 || !val) {
res = -EINVAL;
} else {
prog_val.lock = val != 0;
res = mvebu_write_efuse(bank, &prog_val);
valid_prog_words = 0;
}
return res;
}
int fuse_override(u32 bank, u32 word, u32 val)
{
/* not supported */
return -ENOSYS;
}
|