aboutsummaryrefslogtreecommitdiff
path: root/arch/arm/mach-sunxi/dram_sun9i.c
blob: 14be212e891d29467a06e7c338c6cffc2405b5ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
// SPDX-License-Identifier: GPL-2.0+
/*
 * sun9i dram controller initialisation
 *
 * (C) Copyright 2007-2015
 * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
 * Jerry Wang <wangflord@allwinnertech.com>
 *
 * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
 *                    Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
 */

#include <common.h>
#include <dm.h>
#include <errno.h>
#include <init.h>
#include <log.h>
#include <ram.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/dram.h>
#include <asm/arch/sys_proto.h>

#define DRAM_CLK (CONFIG_DRAM_CLK * 1000000)

/*
 * The following amounts to an extensive rewrite of the code received from
 * Allwinner as part of the open-source bootloader release (refer to
 * https://github.com/allwinner-zh/bootloader.git) and augments the upstream
 * sources (which act as the primary reference point for the inner workings
 * of the 'underdocumented' DRAM controller in the A80) using the following
 * documentation for other memory controllers based on the (Synopsys)
 * Designware IP (DDR memory protocol controller and DDR PHY)
 *   * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide
 *     Document 'SPRUHN7C', Oct 2013 (revised March 2015)
 *   * Xilinx Zynq UltraScale+ MPSoC Register Reference
 *     document ug1087 (v1.0)
 * Note that the Zynq-documentation provides a very close match for the DDR
 * memory protocol controller (and provides a very good guide to the rounding
 * rules for various timings), whereas the TI Keystone II document should be
 * referred to for DDR PHY specifics only.
 *
 * The DRAM controller in the A80 runs at half the frequency of the DDR PHY
 * (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply).
 *
 * Known limitations
 * =================
 * In the current state, the following features are not fully supported and
 * a number of simplifying assumptions have been made:
 *   1) Only DDR3 support is implemented, as our test platform (the A80-Q7
 *      module) is designed to accomodate DDR3/DDR3L.
 *   2) Only 2T-mode has been implemented and tested.
 *   3) The controller supports two different clocking strategies (PLL6 can
 *      either be 2*CK or CK/2)... we only support the 2*CK clock at this
 *      time and haven't verified whether the alternative clocking strategy
 *      works.  If you are interested in porting this over/testing this,
 *      please refer to cases where bit 0 of 'dram_tpr8' is tested in the
 *      original code from Allwinner.
 *   4) Support for 2 ranks per controller is not implemented (as we don't
 *      the hardware to test it).
 *
 * Future directions
 * =================
 * The driver should be driven from a device-tree based configuration that
 * can dynamically provide the necessary timing parameters (i.e. target
 * frequency and speed-bin information)---the data structures used in the
 * calculation of the timing parameters are already designed to capture
 * similar information as the device tree would provide.
 *
 * To enable a device-tree based configuration of the sun9i platform, we
 * will need to enable CONFIG_TPL and bootstrap in 3 stages: initially
 * into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the
 * stage to initialise the platform via the device-tree---before having
 * the full U-Boot run from DDR.
 */

/*
 * A number of DDR3 timings are given as "the greater of a fixed number of
 * clock cycles (CK) or nanoseconds.  We express these using a structure
 * that holds a cycle count and a duration in picoseconds (so we can model
 * sub-ns timings, such as 7.5ns without losing precision or resorting to
 * rounding up early.
 */
struct dram_sun9i_timing {
	u32 ck;
	u32 ps;
};

/* */
struct dram_sun9i_cl_cwl_timing {
	u32 CL;
	u32 CWL;
	u32 tCKmin;  /* in ps */
	u32 tCKmax;  /* in ps */
};

struct dram_sun9i_para {
	u32 dram_type;

	u8 bus_width;
	u8 chan;
	u8 rank;
	u8 rows;
	u16 page_size;

	/* Timing information for each speed-bin */
	struct dram_sun9i_cl_cwl_timing *cl_cwl_table;
	u32 cl_cwl_numentries;

	/*
	 * For the timings, we try to keep the order and grouping used in
	 * JEDEC Standard No. 79-3F
	 */

	/* timings */
	u32 tREFI; /* in ns */
	u32 tRFC;  /* in ns */

	u32 tRAS;  /* in ps */

	/* command and address timing */
	u32 tDLLK; /* in nCK */
	struct dram_sun9i_timing tRTP;
	struct dram_sun9i_timing tWTR;
	u32 tWR;   /* in nCK */
	u32 tMRD;  /* in nCK */
	struct dram_sun9i_timing tMOD;
	u32 tRCD;  /* in ps */
	u32 tRP;   /* in ps */
	u32 tRC;   /* in ps */
	u32 tCCD;  /* in nCK */
	struct dram_sun9i_timing tRRD;
	u32 tFAW;  /* in ps */

	/* calibration timing */
	/* struct dram_sun9i_timing tZQinit; */
	struct dram_sun9i_timing tZQoper;
	struct dram_sun9i_timing tZQCS;

	/* reset timing */
	/* struct dram_sun9i_timing tXPR; */

	/* self-refresh timings */
	struct dram_sun9i_timing tXS;
	u32 tXSDLL; /* in nCK */
	/* struct dram_sun9i_timing tCKESR; */
	struct dram_sun9i_timing tCKSRE;
	struct dram_sun9i_timing tCKSRX;

	/* power-down timings */
	struct dram_sun9i_timing tXP;
	struct dram_sun9i_timing tXPDLL;
	struct dram_sun9i_timing tCKE;

	/* write leveling timings */
	u32 tWLMRD;    /* min, in nCK */
	/* u32 tWLDQSEN;  min, in nCK */
	u32 tWLO;      /* max, in ns */
	/* u32 tWLOE;     max, in ns */

	/* u32 tCKDPX;    in nCK */
	/* u32 tCKCSX;    in nCK */
};

static void mctl_sys_init(void);

#define SCHED_RDWR_IDLE_GAP(n)            ((n & 0xff) << 24)
#define SCHED_GO2CRITICAL_HYSTERESIS(n)   ((n & 0xff) << 16)
#define SCHED_LPR_NUM_ENTRIES(n)          ((n & 0xff) <<  8)
#define SCHED_PAGECLOSE                   (1 << 2)
#define SCHED_PREFER_WRITE                (1 << 1)
#define SCHED_FORCE_LOW_PRI_N             (1 << 0)

#define SCHED_CONFIG		(SCHED_RDWR_IDLE_GAP(0xf) | \
				 SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \
				 SCHED_LPR_NUM_ENTRIES(0x20) | \
				 SCHED_FORCE_LOW_PRI_N)
#define PERFHPR0_CONFIG                   0x0000001f
#define PERFHPR1_CONFIG                   0x1f00001f
#define PERFLPR0_CONFIG                   0x000000ff
#define PERFLPR1_CONFIG                   0x0f0000ff
#define PERFWR0_CONFIG                    0x000000ff
#define PERFWR1_CONFIG                    0x0f0001ff

static void mctl_ctl_sched_init(unsigned long  base)
{
	struct sunxi_mctl_ctl_reg *mctl_ctl =
		(struct sunxi_mctl_ctl_reg *)base;

	/* Needs to be done before the global clk enable... */
	writel(SCHED_CONFIG, &mctl_ctl->sched);
	writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0);
	writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1);
	writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0);
	writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1);
	writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0);
	writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1);
}

static void mctl_sys_init(void)
{
	struct sunxi_ccm_reg * const ccm =
		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
	struct sunxi_mctl_com_reg * const mctl_com =
		(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;

	debug("Setting PLL6 to %d\n", DRAM_CLK * 2);
	clock_set_pll6(DRAM_CLK * 2);

	/* Original dram init code which may come in handy later
	********************************************************
	clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) :
					 (DRAM_CLK / 2), false);

	if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) {
		 * PLL6 should be 2*CK *
		 * ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); *
		ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0);
	} else {
		 * PLL6 should be CK/2 *
		ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1);
	}

	if (para->dram_tpr13 & (0xf<<18)) {
		 *
		 * bit21:bit18=0001:pll swing 0.4
		 * bit21:bit18=0010:pll swing 0.3
		 * bit21:bit18=0100:pll swing 0.2
		 * bit21:bit18=1000:pll swing 0.1
		 *
		dram_dbg("DRAM fre extend open !\n");
		reg_val=mctl_read_w(CCM_PLL6_DDR_REG);
		reg_val&=(0x1<<16);
		reg_val=reg_val>>16;

		if(para->dram_tpr13 & (0x1<<18))
		{
			mctl_write_w(CCM_PLL_BASE + 0x114,
				(0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)|
				(0x2U<<29)|(0x1U<<31)));
		}
		else if(para->dram_tpr13 & (0x1<<19))
		{
			mctl_write_w(CCM_PLL_BASE + 0x114,
				(0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)|
				(0x2U<<29)|(0x1U<<31)));
		}
		else if(para->dram_tpr13 & (0x1<<20))
		{
			mctl_write_w(CCM_PLL_BASE + 0x114,
				(0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)|
				(0x2U<<29)|(0x1U<<31)));
		}
		else if(para->dram_tpr13 & (0x1<<21))
		{
			mctl_write_w(CCM_PLL_BASE + 0x114,
				(0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)|
				(0x2U<<29)|(0x1U<<31)));
		}

		//frequency extend open
		reg_val = mctl_read_w(CCM_PLL6_DDR_REG);
		reg_val |= ((0x1<<24)|(0x1<<30));
		mctl_write_w(CCM_PLL6_DDR_REG, reg_val);


		while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30));
	}

	aw_delay(0x20000);	//make some delay
	********************************************************
	*/

	/* assert mctl reset */
	clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
	/* stop mctl clock */
	clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);

	sdelay(2000);

	/* deassert mctl reset */
	setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
	/* enable mctl clock */
	setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);

	/* set up the transactions scheduling before enabling the global clk */
	mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE);
	mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE);
	sdelay(1000);

	debug("2\n");

	/* (3 << 12): PLL_DDR */
	writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg);
	do {
		debug("Waiting for DRAM_CLK_CFG\n");
		sdelay(10000);
	} while (readl(&ccm->dram_clk_cfg) & (1 << 16));
	setbits_le32(&ccm->dram_clk_cfg, (1 << 31));

	/* TODO: we only support the common case ... i.e. 2*CK */
	setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30));
	writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */

	sdelay(2000);

	/* Original dram init code which may come in handy later
	********************************************************
	if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) {
		 * PLL6 should be 2*CK *
		 * gating 2 channel pll *
		reg_val = mctl_read_w(MC_CCR);
		reg_val |= ((0x1 << 14) | (0x1U << 30));
		mctl_write_w(MC_CCR, reg_val);
		mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 *
	} else {
		 * enable 2 channel pll *
		reg_val = mctl_read_w(MC_CCR);
		reg_val &= ~((0x1 << 14) | (0x1U << 30));
		mctl_write_w(MC_CCR, reg_val);
		mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 *
	}

	reg_val = mctl_read_w(MC_CCR);
	reg_val &= ~((0x1<<15)|(0x1U<<31));
	mctl_write_w(MC_CCR, reg_val);
	aw_delay(20);
	//aw_delay(0x10);
	********************************************************
	*/

	clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN);
	sdelay(1000);

	setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN);
	/* TODO if (para->chan == 2) */
	setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
}

static void mctl_com_init(struct dram_sun9i_para *para)
{
	struct sunxi_mctl_com_reg * const mctl_com =
		(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;

	/* TODO: hard-wired for DDR3 now */
	writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL :
				    MCTL_CR_CHANNEL_SINGLE)
	       | MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1)
	       | MCTL_CR_ROW(para->rows)
	       | ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16)
	       | MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank),
	       &mctl_com->cr);

	debug("CR: %d\n", readl(&mctl_com->cr));
}

static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para)
{
	struct sunxi_mctl_ctl_reg *mctl_ctl;
	struct sunxi_mctl_phy_reg *mctl_phy;

	u32 CL = 0;
	u32 CWL = 0;
	u16 mr[4] = { 0, };

#define PS2CYCLES_FLOOR(n)    ((n * CONFIG_DRAM_CLK) / 1000000)
#define PS2CYCLES_ROUNDUP(n)  ((n * CONFIG_DRAM_CLK + 999999) / 1000000)
#define NS2CYCLES_FLOOR(n)    ((n * CONFIG_DRAM_CLK) / 1000)
#define NS2CYCLES_ROUNDUP(n)  ((n * CONFIG_DRAM_CLK + 999) / 1000)
#define MAX(a, b)             ((a) > (b) ? (a) : (b))

	/*
	 * Convert the values to cycle counts (nCK) from what is provided
	 * by the definition of each speed bin.
	 */
	/* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */
	const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI);
	const u32 tRFC  = NS2CYCLES_ROUNDUP(para->tRFC);
	const u32 tRCD  = PS2CYCLES_ROUNDUP(para->tRCD);
	const u32 tRP   = PS2CYCLES_ROUNDUP(para->tRP);
	const u32 tRC   = PS2CYCLES_ROUNDUP(para->tRC);
	const u32 tRAS  = PS2CYCLES_ROUNDUP(para->tRAS);

	/* command and address timing */
	const u32 tDLLK = para->tDLLK;
	const u32 tRTP  = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps));
	const u32 tWTR  = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps));
	const u32 tWR   = NS2CYCLES_FLOOR(para->tWR);
	const u32 tMRD  = para->tMRD;
	const u32 tMOD  = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps));
	const u32 tCCD  = para->tCCD;
	const u32 tRRD  = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps));
	const u32 tFAW  = PS2CYCLES_ROUNDUP(para->tFAW);

	/* calibration timings */
	/* const u32 tZQinit = MAX(para->tZQinit.ck,
				PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */
	const u32 tZQoper = MAX(para->tZQoper.ck,
				PS2CYCLES_ROUNDUP(para->tZQoper.ps));
	const u32 tZQCS   = MAX(para->tZQCS.ck,
				PS2CYCLES_ROUNDUP(para->tZQCS.ps));

	/* reset timing */
	/* const u32 tXPR  = MAX(para->tXPR.ck,
				PS2CYCLES_ROUNDUP(para->tXPR.ps)); */

	/* power-down timings */
	const u32 tXP    = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps));
	const u32 tXPDLL = MAX(para->tXPDLL.ck,
			       PS2CYCLES_ROUNDUP(para->tXPDLL.ps));
	const u32 tCKE   = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps));

	/*
	 * self-refresh timings (keep below power-down timings, as tCKESR
	 * needs to be calculated based on the nCK value of tCKE)
	 */
	const u32 tXS    = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps));
	const u32 tXSDLL = para->tXSDLL;
	const u32 tCKSRE = MAX(para->tCKSRE.ck,
			       PS2CYCLES_ROUNDUP(para->tCKSRE.ps));
	const u32 tCKESR = tCKE + 1;
	const u32 tCKSRX = MAX(para->tCKSRX.ck,
			       PS2CYCLES_ROUNDUP(para->tCKSRX.ps));

	/* write leveling timings */
	const u32 tWLMRD = para->tWLMRD;
	/* const u32 tWLDQSEN = para->tWLDQSEN; */
	const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO);
	/* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */

	const u32 tRASmax = tREFI * 9;
	int i;

	for (i = 0; i < para->cl_cwl_numentries; ++i) {
		const u32 tCK = 1000000 / CONFIG_DRAM_CLK;

		if ((para->cl_cwl_table[i].tCKmin <= tCK) &&
		    (tCK < para->cl_cwl_table[i].tCKmax)) {
			CL = para->cl_cwl_table[i].CL;
			CWL = para->cl_cwl_table[i].CWL;

			debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL);
			break;
		}
	}

	if ((CL == 0) && (CWL == 0)) {
		printf("failed to find valid CL/CWL for operating point %d MHz\n",
		       CONFIG_DRAM_CLK);
		return 0;
	}

	if (ch_index == 0) {
		mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
		mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
	} else {
		mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE;
		mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
	}

	if (para->dram_type == DRAM_TYPE_DDR3) {
		mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) |
			DDR3_MR0_CL(CL);
		mr[1] = DDR3_MR1_RTT120OHM;
		mr[2] = DDR3_MR2_TWL(CWL);
		mr[3] = 0;

		/*
		 * DRAM3 initialisation requires holding CKE LOW for
		 * at least 500us prior to starting the initialisation
		 * sequence and at least 10ns after driving CKE HIGH
		 * before the initialisation sequence may be started).
		 *
		 * Refer to Micron document "TN-41-07: DDR3 Power-Up,
		 * Initialization, and Reset DDR3 Initialization
		 * Routine" for details).
		 */
		writel(MCTL_INIT0_POST_CKE_x1024(1) |
		       MCTL_INIT0_PRE_CKE_x1024(
			    (500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */
		       &mctl_ctl->init[0]);
		writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
		       &mctl_ctl->init[1]);
		/* INIT2 is not used for DDR3 */
		writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]),
		       &mctl_ctl->init[3]);
		writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]),
		       &mctl_ctl->init[4]);
		writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */
		       &mctl_ctl->init[5]);
	} else {
		/* !!! UNTESTED !!! */
		/*
		 * LPDDR2 and/or LPDDR3 require a 200us minimum delay
		 * after driving CKE HIGH in the initialisation sequence.
		 */
		writel(MCTL_INIT0_POST_CKE_x1024(
				(200 * CONFIG_DRAM_CLK + 1023) / 1024),
		       &mctl_ctl->init[0]);
		writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
		       &mctl_ctl->init[1]);
		writel(MCTL_INIT2_IDLE_AFTER_RESET_x32(
				(CONFIG_DRAM_CLK + 31) / 32) /* 1us */
		       | MCTL_INIT2_MIN_STABLE_CLOCK_x1(5),  /* 5 cycles */
		       &mctl_ctl->init[2]);
		writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]),
		       &mctl_ctl->init[3]);
		writel(MCTL_INIT4_EMR2(mr[3]),
		       &mctl_ctl->init[4]);
		writel(MCTL_INIT5_DEV_ZQINIT_x32(
				(CONFIG_DRAM_CLK + 31) / 32) /* 1us */
		       | MCTL_INIT5_MAX_AUTO_INIT_x1024(
				(10 * CONFIG_DRAM_CLK + 1023) / 1024),
		       &mctl_ctl->init[5]);
	}

	/* (DDR3) We always use a burst-length of 8. */
#define MCTL_BL               8
	/* wr2pre: WL + BL/2 + tWR */
#define WR2PRE           (MCTL_BL/2 + CWL + tWTR)
	/* wr2rd = CWL + BL/2 + tWTR */
#define WR2RD            (MCTL_BL/2 + CWL + tWTR)
	/*
	 * rd2wr = RL + BL/2 + 2 - WL (for DDR3)
	 * rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3)
	 */
#define RD2WR            (CL + MCTL_BL/2 + 2 - CWL)
#define MCTL_PHY_TRTW        0
#define MCTL_PHY_TRTODT      0

#define MCTL_DIV2(n)         ((n + 1)/2)
#define MCTL_DIV32(n)        (n/32)
#define MCTL_DIV1024(n)      (n/1024)

	writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) |
	       (MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0),
	       &mctl_ctl->dramtmg[0]);
	writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) |
	       (MCTL_DIV2(tRC) << 0),
	       &mctl_ctl->dramtmg[1]);
	writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) |
	       (MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0),
	       &mctl_ctl->dramtmg[2]);
	/*
	 * Note: tMRW is located at bit 16 (and up) in DRAMTMG3...
	 * this is only relevant for LPDDR2/LPDDR3
	 */
	writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0),
	       &mctl_ctl->dramtmg[3]);
	writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) |
	       (MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0),
	       &mctl_ctl->dramtmg[4]);
	writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) |
	       (MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0),
	       &mctl_ctl->dramtmg[5]);

	/* These timings are relevant for LPDDR2/LPDDR3 only */
	/* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) |
	       (MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */

	/* printf("DRAMTMG7 reset value: 0x%x\n",
		readl(&mctl_ctl->dramtmg[7])); */
	/* DRAMTMG7 reset value: 0x202 */
	/* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */
	/* printf("DRAMTMG8 reset value: 0x%x\n",
		readl(&mctl_ctl->dramtmg[8])); */
	/* DRAMTMG8 reset value: 0x44 */

	writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]);

	writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0),
	       &mctl_ctl->rfshtmg);

	if (para->dram_type == DRAM_TYPE_DDR3) {
		writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) |
		       (1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0),
			&mctl_ctl->dfitmg[0]);
	} else {
		/* TODO */
	}

	/* TODO: handle the case of the write latency domain going to 0 ... */

	/*
	 * Disable dfi_init_complete_en (the triggering of the SDRAM
	 * initialisation when the PHY initialisation completes).
	 */
	clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
	/* Disable the automatic generation of DLL calibration requests */
	setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD);

	/* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */
	/* TODO: make 2T and BUSWIDTH configurable  */
	writel(MCTL_MSTR_DEVICETYPE(para->dram_type) |
	       MCTL_MSTR_BURSTLENGTH(para->dram_type) |
	       MCTL_MSTR_ACTIVERANKS(para->rank) |
	       MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32,
	       &mctl_ctl->mstr);

	if (para->dram_type == DRAM_TYPE_DDR3) {
		writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) |
		       (MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]);
		/*
		 * TODO: is the following really necessary as the bottom
		 * half should already be 0x100 and the upper half should
		 * be ignored for a DDR3 device???
		 */
		writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100),
		       &mctl_ctl->zqctrl[1]);
	} else {
		writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40),
		       &mctl_ctl->zqctrl[0]);
		writel(MCTL_ZQCTRL1_TZQRESET(0x28) |
		       MCTL_ZQCTRL1_TZQSI_x1024(0x100),
		       &mctl_ctl->zqctrl[1]);
	}

	/* Assert dfi_init_complete signal */
	setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
	/* Disable auto-refresh */
	setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);

	/* PHY initialisation */

	/* TODO: make 2T and 8-bank mode configurable  */
	writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE |
	       MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3,
	       &mctl_phy->dcr);

	/* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */
	if (para->dram_type != DRAM_TYPE_DDR3)
		clrbits_le32(&mctl_phy->dsgcr, (3 << 6));

	writel(mr[0], &mctl_phy->mr0);
	writel(mr[1], &mctl_phy->mr1);
	writel(mr[2], &mctl_phy->mr2);
	writel(mr[3], &mctl_phy->mr3);

	/*
	 * The DFI PHY is running at full rate. We thus use the actual
	 * timings in clock cycles here.
	 */
	writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) |
	       (tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0),
		&mctl_phy->dtpr[0]);
	writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) |
	       (tRFC << 11) | (tWLMRD << 20) | (tWLO << 26),
	       &mctl_phy->dtpr[1]);
	writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) |
	       (tCKE << 15) | (tDLLK << 19) |
	       (MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) |
	       (((tCCD - 4) & 0x1) << 31),
	       &mctl_phy->dtpr[2]);

	/* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */
	/* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */

	/*
	 * We use the same values used by Allwinner's Boot0 for the PTR
	 * (PHY timing register) configuration that is tied to the PHY
	 * implementation.
	 */
	writel(0x42C21590, &mctl_phy->ptr[0]);
	writel(0xD05612C0, &mctl_phy->ptr[1]);
	if (para->dram_type == DRAM_TYPE_DDR3) {
		const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */
		const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) /
			1000; /* 360ns */
		const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */
		const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */

		writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
		writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
	} else {
		/* LPDDR2 or LPDDR3 */
		const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) /
			1000; /* 100ns */
		const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */
		const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */
		const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */

		writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
		writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
	}

	/* TEST ME */
	writel(0x00203131, &mctl_phy->acmdlr);

	/* TODO: can we enable this for 2 ranks, even when we don't know yet */
	writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank),
	       &mctl_phy->dtcr);

	/* TODO: half width */
	debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0]));
	writel(0x7C000285, &mctl_phy->dx[2].gcr[0]);
	writel(0x7C000285, &mctl_phy->dx[3].gcr[0]);

	clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff,
			(CONFIG_DRAM_ZQ >>  0) & 0xff);  /* CK/CA */
	clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff,
			(CONFIG_DRAM_ZQ >>  8) & 0xff);  /* DX0/DX1 */
	clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff,
			(CONFIG_DRAM_ZQ >> 16) & 0xff);  /* DX2/DX3 */

	/* TODO: make configurable & implement non-ODT path */
	if (1) {
		int lane;
		for (lane = 0; lane < 4; ++lane) {
			clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff);
			clrbits_le32(&mctl_phy->dx[lane].gcr[3],
				     (0x3<<12) | (0x3<<4));
		}
	} else {
		/* TODO: check */
		int lane;
		for (lane = 0; lane < 4; ++lane) {
			clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff,
					0xaaaa);
			if (para->dram_type == DRAM_TYPE_DDR3)
				setbits_le32(&mctl_phy->dx[lane].gcr[3],
					     (0x3<<12) | (0x3<<4));
			else
				setbits_le32(&mctl_phy->dx[lane].gcr[3],
					     0x00000012);
		}
	}

	writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */
	writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */
	writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */

	/* Disable auto-refresh prior to data training */
	setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);

	setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */
	/* TODO: IODDRM (IO DDR-MODE) for DDR3L */
	clrsetbits_le32(&mctl_phy->pgcr[1],
			MCTL_PGCR1_ZCKSEL_MASK,
			MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN);

	setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */
	/* TODO: single-channel PLL mode??? missing */
	setbits_le32(&mctl_phy->pllcr,
		     MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN);
	/* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */

	/* Disable VT compensation */
	clrbits_le32(&mctl_phy->pgcr[0], 0x3f);

	/* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */
	if (para->dram_type == DRAM_TYPE_DDR3)
		clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3);
	else
		clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573);

	sdelay(10000); /* XXX necessary? */

	/* Wait for the INIT bit to clear itself... */
	while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) {
		/* not done yet -- keep spinning */
		debug("MCTL_PIR_INIT not set\n");
		sdelay(1000);
		/* TODO: implement timeout */
	}

	/* TODO: not used --- there's a "2rank debug" section here */

	/* Original dram init code which may come in handy later
	********************************************************
	 * LPDDR2 and LPDDR3 *
	if ((para->dram_type) == 6 || (para->dram_type) == 7) {
		reg_val = mctl_read_w(P0_DSGCR + ch_offset);
		reg_val &= (~(0x3<<6));		* set DQSGX to 1 *
		reg_val |= (0x1<<6);		* dqs gate extend *
		mctl_write_w(P0_DSGCR + ch_offset, reg_val);
		dram_dbg("DQS Gate Extend Enable!\n", ch_index);
	}

	 * Disable ZCAL after initial--for nand dma debug--20140330 by YSZ *
	if (para->dram_tpr13 & (0x1<<31)) {
		reg_val = mctl_read_w(P0_ZQ0CR + ch_offset);
		reg_val |= (0x7<<11);
		mctl_write_w(P0_ZQ0CR + ch_offset, reg_val);
	}
	********************************************************
	*/

	/*
	 * TODO: more 2-rank support
	 * (setting the "dqs gate delay to average between 2 rank")
	 */

	/* check if any errors are set */
	if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) {
		debug("Channel %d unavailable!\n", ch_index);
		return 0;
	} else{
		/* initial OK */
		debug("Channel %d OK!\n", ch_index);
		/* return 1; */
	}

	while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) {
		debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n");
		sdelay(100000);
		/* init not done */
		/* TODO: implement time-out */
	}
	debug("done\n");

	/* "DDR is controller by contoller" */
	clrbits_le32(&mctl_phy->pgcr[3], (1 << 25));

	/* TODO: is the following necessary? */
	debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc));
	writel(0, &mctl_ctl->dfimisc);

	/* Enable auto-refresh */
	clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);

	debug("channel_init complete\n");
	return 1;
}

signed int DRAMC_get_dram_size(void)
{
	struct sunxi_mctl_com_reg * const mctl_com =
		(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;

	unsigned int reg_val;
	unsigned int dram_size;
	unsigned int temp;

	reg_val = readl(&mctl_com->cr);

	temp = (reg_val >> 8) & 0xf;	/* page size code */
	dram_size = (temp - 6);		/* (1 << dram_size) * 512Bytes */

	temp = (reg_val >> 4) & 0xf;	/* row width code */
	dram_size += (temp + 1);	/* (1 << dram_size) * 512Bytes */

	temp = (reg_val >> 2) & 0x3;	/* bank number code */
	dram_size += (temp + 2);	/* (1 << dram_size) * 512Bytes */

	temp = reg_val & 0x3;		/* rank number code */
	dram_size += temp;		/* (1 << dram_size) * 512Bytes */

	temp = (reg_val >> 19) & 0x1;	/* channel number code */
	dram_size += temp;		/* (1 << dram_size) * 512Bytes */

	dram_size = dram_size - 11;	/* (1 << dram_size) MBytes */

	return 1 << dram_size;
}

unsigned long sunxi_dram_init(void)
{
	struct sunxi_mctl_com_reg * const mctl_com =
		(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;

	struct dram_sun9i_cl_cwl_timing cl_cwl[] = {
		{ .CL =  5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 },
		{ .CL =  6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 },
		{ .CL =  8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 },
		{ .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 },
		{ .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 }
	};

	/* Set initial parameters, these get modified by the autodetect code */
	struct dram_sun9i_para para = {
		.dram_type = DRAM_TYPE_DDR3,
		.bus_width = 32,
		.chan = 2,
		.rank = 1,
		/* .rank = 2, */
		.page_size = 4096,
		/* .rows = 16, */
		.rows = 15,

		/* CL/CWL table for the speed bin */
		.cl_cwl_table = cl_cwl,
		.cl_cwl_numentries = sizeof(cl_cwl) /
			sizeof(struct dram_sun9i_cl_cwl_timing),

		/* timings */
		.tREFI = 7800,	/* 7.8us (up to 85 degC) */
		.tRFC  = 260,	/* 260ns for 4GBit devices */
				/* 350ns @ 8GBit */

		.tRCD  = 13750,
		.tRP   = 13750,
		.tRC   = 48750,
		.tRAS  = 35000,

		.tDLLK = 512,
		.tRTP  = { .ck = 4, .ps = 7500 },
		.tWTR  = { .ck = 4, .ps = 7500 },
		.tWR   = 15,
		.tMRD  = 4,
		.tMOD  = { .ck = 12, .ps = 15000 },
		.tCCD  = 4,
		.tRRD  = { .ck = 4, .ps = 7500 },
		.tFAW  = 40,

		/* calibration timing */
		/* .tZQinit = { .ck = 512, .ps = 640000 }, */
		.tZQoper = { .ck = 256, .ps = 320000 },
		.tZQCS   = { .ck = 64,  .ps = 80000 },

		/* reset timing */
		/* .tXPR  = { .ck = 5, .ps = 10000 }, */

		/* self-refresh timings */
		.tXS  = { .ck = 5, .ps = 10000 },
		.tXSDLL = 512,
		.tCKSRE = { .ck = 5, .ps = 10000 },
		.tCKSRX = { .ck = 5, .ps = 10000 },

		/* power-down timings */
		.tXP = { .ck = 3, .ps = 6000 },
		.tXPDLL = { .ck = 10, .ps = 24000 },
		.tCKE = { .ck = 3, .ps = 5000 },

		/* write leveling timings */
		.tWLMRD = 40,
		/* .tWLDQSEN = 25, */
		.tWLO = 7500,
		/* .tWLOE = 2000, */
	};

	/*
	 * Disable A80 internal 240 ohm resistor.
	 *
	 * This code sequence is adapated from Allwinner's Boot0 (see
	 * https://github.com/allwinner-zh/bootloader.git), as there
	 * is no documentation for these two registers in the R_PRCM
	 * block.
	 */
	setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8));
	writel(0, SUNXI_PRCM_BASE + 0x1e8);

	mctl_sys_init();

	if (!mctl_channel_init(0, &para))
		return 0;

	/* dual-channel */
	if (!mctl_channel_init(1, &para)) {
		/* disable channel 1 */
		clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK,
				MCTL_CR_CHANNEL_SINGLE);
		/* disable channel 1 global clock */
		clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN);
	}

	mctl_com_init(&para);

	/* return the proper RAM size */
	return DRAMC_get_dram_size() << 20;
}