1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
// SPDX-License-Identifier: GPL-2.0+
/*
* sl28 extension commands
*
* Copyright (c) 2020 Kontron Europe GmbH
*/
#include <common.h>
#include <command.h>
#include <i2c.h>
#include <linux/delay.h>
#define CPLD_I2C_ADDR 0x4a
#define REG_UFM_CTRL 0x02
#define UFM_CTRL_DCLK BIT(1)
#define UFM_CTRL_DIN BIT(2)
#define UFM_CTRL_PROGRAM BIT(3)
#define UFM_CTRL_ERASE BIT(4)
#define UFM_CTRL_DSHIFT BIT(5)
#define UFM_CTRL_DOUT BIT(6)
#define UFM_CTRL_BUSY BIT(7)
static int ufm_shift_data(struct udevice *dev, u16 data_in, u16 *data_out)
{
int i;
int ret;
u16 data = 0;
/* latch data */
ret = dm_i2c_reg_write(dev, REG_UFM_CTRL, 0);
if (ret < 0)
return ret;
ret = dm_i2c_reg_write(dev, REG_UFM_CTRL, UFM_CTRL_DCLK);
if (ret < 0)
return ret;
/* assert drshift */
ret = dm_i2c_reg_write(dev, REG_UFM_CTRL,
UFM_CTRL_DSHIFT | UFM_CTRL_DCLK);
if (ret < 0)
return ret;
/* clock 16 data bits, reverse order */
for (i = 15; i >= 0; i--) {
u8 din = (data_in & (1 << i)) ? UFM_CTRL_DIN : 0;
ret = dm_i2c_reg_write(dev, REG_UFM_CTRL, UFM_CTRL_DSHIFT
| din);
if (ret < 0)
return ret;
if (data_out) {
ret = dm_i2c_reg_read(dev, REG_UFM_CTRL);
if (ret < 0)
return ret;
if (ret & UFM_CTRL_DOUT)
data |= (1 << i);
}
ret = dm_i2c_reg_write(dev, REG_UFM_CTRL,
UFM_CTRL_DSHIFT | UFM_CTRL_DCLK | din);
if (ret < 0)
return ret;
}
/* deassert drshift */
ret = dm_i2c_reg_write(dev, REG_UFM_CTRL, UFM_CTRL_DCLK);
if (ret < 0)
return ret;
if (data_out)
*data_out = data;
return ret;
}
static int ufm_erase(struct udevice *dev)
{
int ret;
/* erase, tEPMX is 500ms */
ret = dm_i2c_reg_write(dev, REG_UFM_CTRL,
UFM_CTRL_DCLK | UFM_CTRL_ERASE);
if (ret < 0)
return ret;
ret = dm_i2c_reg_write(dev, REG_UFM_CTRL, UFM_CTRL_DCLK);
if (ret < 0)
return ret;
mdelay(500);
return 0;
}
static int ufm_program(struct udevice *dev)
{
int ret;
/* program, tPPMX is 100us */
ret = dm_i2c_reg_write(dev, REG_UFM_CTRL,
UFM_CTRL_DCLK | UFM_CTRL_PROGRAM);
if (ret < 0)
return ret;
ret = dm_i2c_reg_write(dev, REG_UFM_CTRL, UFM_CTRL_DCLK);
if (ret < 0)
return ret;
udelay(100);
return 0;
}
static int ufm_write(struct udevice *dev, u16 data)
{
int ret;
ret = ufm_shift_data(dev, data, NULL);
if (ret < 0)
return ret;
ret = ufm_erase(dev);
if (ret < 0)
return ret;
return ufm_program(dev);
}
static int ufm_read(struct udevice *dev, u16 *data)
{
return ufm_shift_data(dev, 0, data);
}
static int do_sl28_nvm(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
struct udevice *dev;
u16 nvm;
int ret;
char *endp;
if (i2c_get_chip_for_busnum(0, CPLD_I2C_ADDR, 1, &dev))
return CMD_RET_FAILURE;
if (argc > 1) {
nvm = simple_strtoul(argv[1], &endp, 16);
if (*endp != '\0') {
printf("ERROR: argument is not a valid number\n");
ret = -EINVAL;
goto out;
}
/*
* We swap all bits, because the a zero bit in hardware means the
* feature is enabled. But this is hard for the user.
*/
nvm ^= 0xffff;
ret = ufm_write(dev, nvm);
if (ret)
goto out;
printf("New settings will be activated after the next power cycle!\n");
} else {
ret = ufm_read(dev, &nvm);
if (ret)
goto out;
nvm ^= 0xffff;
printf("%04hx\n", nvm);
}
return CMD_RET_SUCCESS;
out:
printf("command failed (%d)\n", ret);
return CMD_RET_FAILURE;
}
static char sl28_help_text[] =
"nvm [<hex>] - display/set the 16 non-volatile bits\n";
U_BOOT_CMD_WITH_SUBCMDS(sl28, "SMARC-sAL28 specific", sl28_help_text,
U_BOOT_SUBCMD_MKENT(nvm, 2, 1, do_sl28_nvm));
|