aboutsummaryrefslogtreecommitdiff
path: root/board/micronas/vct/ebi_onenand.c
blob: 862ce2682eb621299927caf9b53904cd3393ffb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// SPDX-License-Identifier: GPL-2.0+
/*
 * (C) Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
 */

#include <common.h>
#include <asm/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include "vct.h"

#define BURST_SIZE_WORDS		4

static u16 ebi_nand_read_word(void __iomem *addr)
{
	reg_write(EBI_CPU_IO_ACCS(EBI_BASE), (EXT_DEVICE_CHANNEL_2 | (u32)addr));
	ebi_wait();

	return reg_read(EBI_IO_ACCS_DATA(EBI_BASE)) >> 16;
}

static void ebi_nand_write_word(u16 data, void __iomem * addr)
{
	ebi_wait();
	reg_write(EBI_IO_ACCS_DATA(EBI_BASE), (data << 16));
	reg_write(EBI_CPU_IO_ACCS(EBI_BASE),
		  EXT_DEVICE_CHANNEL_2 | EBI_CPU_WRITE | (u32)addr);
	ebi_wait();
}

/*
 * EBI initialization for OneNAND FLASH access
 */
int ebi_init_onenand(void)
{
	reg_write(EBI_DEV1_CONFIG1(EBI_BASE), 0x83000);

	reg_write(EBI_DEV2_CONFIG1(EBI_BASE), 0x00403002);
	reg_write(EBI_DEV2_CONFIG2(EBI_BASE), 0x50);

	reg_write(EBI_DEV3_CONFIG1(EBI_BASE), 0x00403002);
	reg_write(EBI_DEV3_CONFIG2(EBI_BASE), 0x0); /* byte/word ordering */

	reg_write(EBI_DEV2_TIM1_RD1(EBI_BASE), 0x00504000);
	reg_write(EBI_DEV2_TIM1_RD2(EBI_BASE), 0x00001000);
	reg_write(EBI_DEV2_TIM1_WR1(EBI_BASE), 0x12002223);
	reg_write(EBI_DEV2_TIM1_WR2(EBI_BASE), 0x3FC02220);
	reg_write(EBI_DEV3_TIM1_RD1(EBI_BASE), 0x00504000);
	reg_write(EBI_DEV3_TIM1_RD2(EBI_BASE), 0x00001000);
	reg_write(EBI_DEV3_TIM1_WR1(EBI_BASE), 0x05001000);
	reg_write(EBI_DEV3_TIM1_WR2(EBI_BASE), 0x00010200);

	reg_write(EBI_DEV2_TIM_EXT(EBI_BASE), 0xFFF00000);
	reg_write(EBI_DEV2_EXT_ACC(EBI_BASE), 0x0FFFFFFF);

	reg_write(EBI_DEV3_TIM_EXT(EBI_BASE), 0xFFF00000);
	reg_write(EBI_DEV3_EXT_ACC(EBI_BASE), 0x0FFFFFFF);

	/* prepare DMA configuration for EBI */
	reg_write(EBI_DEV3_FIFO_CONFIG(EBI_BASE), 0x0101ff00);

	/* READ only no byte order change, TAG 1 used */
	reg_write(EBI_DEV3_DMA_CONFIG2(EBI_BASE), 0x00000004);

	reg_write(EBI_TAG1_SYS_ID(EBI_BASE), 0x0); /* SCC DMA channel 0 */
	reg_write(EBI_TAG2_SYS_ID(EBI_BASE), 0x1);
	reg_write(EBI_TAG3_SYS_ID(EBI_BASE), 0x2);
	reg_write(EBI_TAG4_SYS_ID(EBI_BASE), 0x3);

	return 0;
}

static void *memcpy_16_from_onenand(void *dst, const void *src, unsigned int len)
{
	void *ret = dst;
	u16 *d = dst;
	u16 *s = (u16 *)src;

	len >>= 1;
	while (len-- > 0)
		*d++ = ebi_nand_read_word(s++);

	return ret;
}

static void *memcpy_32_from_onenand(void *dst, const void *src, unsigned int len)
{
	void *ret = dst;
	u32 *d = (u32 *)dst;
	u32 s = (u32)src;
	u32 bytes_per_block = BURST_SIZE_WORDS * sizeof(int);
	u32 n_blocks = len / bytes_per_block;
	u32 block = 0;
	u32 burst_word;

	for (block = 0; block < n_blocks; block++) {
		/* Trigger read channel 3 */
		reg_write(EBI_CPU_IO_ACCS(EBI_BASE),
			  (EXT_DEVICE_CHANNEL_3 | (s + (block * bytes_per_block))));
		/* Poll status to see whether read has finished */
		ebi_wait();

		/* Squirrel the data away in a safe place */
		for (burst_word = 0; burst_word < BURST_SIZE_WORDS; burst_word++)
			*d++ = reg_read(EBI_IO_ACCS_DATA(EBI_BASE));
	}

	return ret;
}

static void *memcpy_16_to_onenand(void *dst, const void *src, unsigned int len)
{
	void *ret = dst;
	u16 *d = dst;
	u16 *s = (u16 *)src;

	len >>= 1;
	while (len-- > 0)
		ebi_nand_write_word(*s++, d++);

	return ret;
}

static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
	struct onenand_chip *this = mtd->priv;

	if (ONENAND_CURRENT_BUFFERRAM(this)) {
		if (area == ONENAND_DATARAM)
			return mtd->writesize;
		if (area == ONENAND_SPARERAM)
			return mtd->oobsize;
	}

	return 0;
}

static int ebi_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
			      unsigned char *buffer, int offset,
			      size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;
	bufferram += onenand_bufferram_offset(mtd, area);

	if (count < 4)
		memcpy_16_from_onenand(buffer, bufferram + offset, count);
	else
		memcpy_32_from_onenand(buffer, bufferram + offset, count);

	return 0;
}

static int ebi_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
			       const unsigned char *buffer, int offset,
			       size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;
	bufferram += onenand_bufferram_offset(mtd, area);

	memcpy_16_to_onenand(bufferram + offset, buffer, count);

	return 0;
}

int onenand_board_init(struct mtd_info *mtd)
{
	struct onenand_chip *chip = mtd->priv;

	/*
	 * Insert board specific OneNAND access functions
	 */
	chip->read_word = ebi_nand_read_word;
	chip->write_word = ebi_nand_write_word;

	chip->read_bufferram = ebi_read_bufferram;
	chip->write_bufferram = ebi_write_bufferram;

	return 0;
}