aboutsummaryrefslogtreecommitdiff
path: root/board/variscite/dart_6ul/dart_6ul.c
blob: 7326daa1798d926aa6a45504d36e7ad7afa63685 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2015-2019 Variscite Ltd.
 * Copyright (C) 2019 Parthiban Nallathambi <parthitce@gmail.com>
 * Copyright (C) 2021 Marc Ferland, Amotus Solutions Inc., <ferlandm@amotus.ca>
 */

#include <init.h>
#include <net.h>
#include <asm/arch/clock.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/mx6-pins.h>
#include <asm/arch/sys_proto.h>
#include <asm/global_data.h>
#include <asm/mach-imx/iomux-v3.h>
#include <asm/mach-imx/mxc_i2c.h>
#include <dm.h>
#include <fsl_esdhc_imx.h>
#include <i2c_eeprom.h>
#include <linux/bitops.h>
#include <malloc.h>
#include <miiphy.h>

DECLARE_GLOBAL_DATA_PTR;

int dram_init(void)
{
	gd->ram_size = imx_ddr_size();

	return 0;
}

#ifdef CONFIG_NAND_MXS
#define GPMI_PAD_CTRL0 (PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_100K_UP)
#define GPMI_PAD_CTRL1 (PAD_CTL_DSE_40ohm | PAD_CTL_SPEED_MED | \
			PAD_CTL_SRE_FAST)
#define GPMI_PAD_CTRL2 (GPMI_PAD_CTRL0 | GPMI_PAD_CTRL1)
static iomux_v3_cfg_t const nand_pads[] = {
	MX6_PAD_NAND_DATA00__RAWNAND_DATA00 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_DATA01__RAWNAND_DATA01 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_DATA02__RAWNAND_DATA02 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_DATA03__RAWNAND_DATA03 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_DATA04__RAWNAND_DATA04 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_DATA05__RAWNAND_DATA05 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_DATA06__RAWNAND_DATA06 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_DATA07__RAWNAND_DATA07 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_CLE__RAWNAND_CLE | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_ALE__RAWNAND_ALE | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_CE0_B__RAWNAND_CE0_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_RE_B__RAWNAND_RE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_WE_B__RAWNAND_WE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_WP_B__RAWNAND_WP_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_READY_B__RAWNAND_READY_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
	MX6_PAD_NAND_DQS__RAWNAND_DQS | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
};

static void setup_gpmi_nand(void)
{
	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;

	/* config gpmi nand iomux */
	imx_iomux_v3_setup_multiple_pads(nand_pads, ARRAY_SIZE(nand_pads));

	clrbits_le32(&mxc_ccm->CCGR4,
		     MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
		     MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);

	/*
	 * config gpmi and bch clock to 100 MHz
	 * bch/gpmi select PLL2 PFD2 400M
	 * 100M = 400M / 4
	 */
	clrbits_le32(&mxc_ccm->cscmr1,
		     MXC_CCM_CSCMR1_BCH_CLK_SEL |
		     MXC_CCM_CSCMR1_GPMI_CLK_SEL);
	clrsetbits_le32(&mxc_ccm->cscdr1,
			MXC_CCM_CSCDR1_BCH_PODF_MASK |
			MXC_CCM_CSCDR1_GPMI_PODF_MASK,
			(3 << MXC_CCM_CSCDR1_BCH_PODF_OFFSET) |
			(3 << MXC_CCM_CSCDR1_GPMI_PODF_OFFSET));

	/* enable gpmi and bch clock gating */
	setbits_le32(&mxc_ccm->CCGR4,
		     MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
		     MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);

	/* enable apbh clock gating */
	setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK);
}
#endif

#ifdef CONFIG_FEC_MXC
static int setup_fec(int fec_id)
{
	struct iomuxc *const iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR;
	int ret;

	if (fec_id == 0) {
		/*
		 * Use 50M anatop loopback REF_CLK1 for ENET1,
		 * clear gpr1[13], set gpr1[17].
		 */
		clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUX_GPR1_FEC1_MASK,
				IOMUX_GPR1_FEC1_CLOCK_MUX1_SEL_MASK);
	} else {
		/*
		 * Use 50M anatop loopback REF_CLK2 for ENET2,
		 * clear gpr1[14], set gpr1[18].
		 */
		clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUX_GPR1_FEC2_MASK,
				IOMUX_GPR1_FEC2_CLOCK_MUX1_SEL_MASK);
	}

	ret = enable_fec_anatop_clock(fec_id, ENET_50MHZ);
	if (ret)
		return ret;

	enable_enet_clk(1);

	return 0;
}

int board_phy_config(struct phy_device *phydev)
{
	/*
	 * Defaults + Enable status LEDs (LED1: Activity, LED0: Link) & select
	 * 50 MHz RMII clock mode.
	 */
	phy_write(phydev, MDIO_DEVAD_NONE, 0x1f, 0x8190);

	if (phydev->drv->config)
		phydev->drv->config(phydev);

	return 0;
}
#endif /* CONFIG_FEC_MXC */

int board_init(void)
{
	/* Address of boot parameters */
	gd->bd->bi_boot_params = PHYS_SDRAM + 0x100;

#ifdef CONFIG_FEC_MXC
	setup_fec(CONFIG_FEC_ENET_DEV);
#endif

#ifdef CONFIG_NAND_MXS
	setup_gpmi_nand();
#endif
	return 0;
}

/* length of strings stored in the eeprom */
#define DART6UL_PN_LEN   16
#define DART6UL_ASSY_LEN 16
#define DART6UL_DATE_LEN 12

/* eeprom content, 512 bytes */
struct dart6ul_info {
	u32 magic;
	u8 partnumber[DART6UL_PN_LEN];
	u8 assy[DART6UL_ASSY_LEN];
	u8 date[DART6UL_DATE_LEN];
	u32 custom_addr_val[32];
	struct cmd {
		u8 addr;
		u8 index;
	} custom_cmd[150];
	u8 res[33];
	u8 som_info;
	u8 ddr_size;
	u8 crc;
} __attribute__ ((__packed__));

#define DART6UL_INFO_STORAGE_GET(n) ((n) & 0x3)
#define DART6UL_INFO_WIFI_GET(n)    ((n) >> 2 & 0x1)
#define DART6UL_INFO_REV_GET(n)     ((n) >> 3 & 0x3)
#define DART6UL_DDRSIZE(n)          ((n) * SZ_128M)
#define DART6UL_INFO_MAGIC          0x32524156

static const char *som_info_storage_to_str(u8 som_info)
{
	switch (DART6UL_INFO_STORAGE_GET(som_info)) {
	case 0x0: return "none (SD only)";
	case 0x1: return "NAND";
	case 0x2: return "eMMC";
	default: return "unknown";
	}
}

static const char *som_info_rev_to_str(u8 som_info)
{
	switch (DART6UL_INFO_REV_GET(som_info)) {
	case 0x0: return "2.4G";
	case 0x1: return "5G";
	default: return "unknown";
	}
}

int checkboard(void)
{
	const char *path = "eeprom0";
	struct dart6ul_info *info;
	struct udevice *dev;
	int ret, off;

	off = fdt_path_offset(gd->fdt_blob, path);
	if (off < 0) {
		printf("%s: fdt_path_offset() failed: %d\n", __func__, off);
		return off;
	}

	ret = uclass_get_device_by_of_offset(UCLASS_I2C_EEPROM, off, &dev);
	if (ret) {
		printf("%s: uclass_get_device_by_of_offset() failed: %d\n", __func__, ret);
		return ret;
	}

	info = malloc(sizeof(struct dart6ul_info));
	if (!info)
		return -ENOMEM;

	ret = i2c_eeprom_read(dev, 0, (uint8_t *)info,
			      sizeof(struct dart6ul_info));
	if (ret) {
		printf("%s: i2c_eeprom_read() failed: %d\n", __func__, ret);
		free(info);
		return ret;
	}

	if (info->magic != DART6UL_INFO_MAGIC) {
		printf("Board: Invalid board info magic: 0x%08x, expected 0x%08x\n",
		       info->magic, DART6UL_INFO_MAGIC);
		/* do not fail if the content is invalid */
		free(info);
		return 0;
	}

	/* make sure strings are null terminated */
	info->partnumber[DART6UL_PN_LEN - 1] = '\0';
	info->assy[DART6UL_ASSY_LEN - 1] = '\0';
	info->date[DART6UL_DATE_LEN - 1] = '\0';

	printf("Board: PN: %s, Assy: %s, Date: %s\n"
	       "       Storage: %s, Wifi: %s, DDR: %d MiB, Rev: %s\n",
	       info->partnumber,
	       info->assy,
	       info->date,
	       som_info_storage_to_str(info->som_info),
	       DART6UL_INFO_WIFI_GET(info->som_info) ? "yes" : "no",
	       DART6UL_DDRSIZE(info->ddr_size) / SZ_1M,
	       som_info_rev_to_str(info->som_info));

	free(info);

	return 0;
}