aboutsummaryrefslogtreecommitdiff
path: root/cpu/mpc85xx/spd_sdram.c
blob: 5a1dbe2b53c7f7030c2d922da123a46b34768057 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 * Copyright 2004 Freescale Semiconductor.
 * (C) Copyright 2003 Motorola Inc.
 * Xianghua Xiao (X.Xiao@motorola.com)
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <spd.h>
#include <asm/mmu.h>

#if defined(CONFIG_DDR_ECC)
extern void dma_init (void);
extern uint dma_check(void);
extern int  dma_xfer (void *dest, uint count, void *src);
#endif

#ifdef CONFIG_SPD_EEPROM

#ifndef	CFG_READ_SPD
#define CFG_READ_SPD	i2c_read
#endif

/*
 * Convert picoseconds into clock cycles (rounding up if needed).
 */

int
picos_to_clk(int picos)
{
	int clks;

	clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
	if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
		clks++;
	}

	return clks;
}

unsigned int
banksize(unsigned char row_dens)
{
	return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
}

long int
spd_sdram(void)
{
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ccsr_ddr_t *ddr = &immap->im_ddr;
	volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm;
	spd_eeprom_t spd;
	unsigned tmp, tmp1;
	unsigned int memsize;
	unsigned int tlb_size;
	unsigned int law_size;
	unsigned char caslat;
	unsigned int ram_tlb_index;
	unsigned int ram_tlb_address;

	CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));

	if (spd.nrows > 2) {
		puts("DDR:Only two chip selects are supported on ADS.\n");
		return 0;
	}

	if (spd.nrow_addr < 12
	    || spd.nrow_addr > 14
	    || spd.ncol_addr < 8
	    || spd.ncol_addr > 11) {
		puts("DDR:Row or Col number unsupported.\n");
		return 0;
	}

	ddr->cs0_bnds = (banksize(spd.row_dens) >> 24) - 1;
	ddr->cs0_config = ( 1 << 31
			    | (spd.nrow_addr - 12) << 8
			    | (spd.ncol_addr - 8) );
	debug("\n");
	debug("cs0_bnds = 0x%08x\n",ddr->cs0_bnds);
	debug("cs0_config = 0x%08x\n",ddr->cs0_config);

	if (spd.nrows == 2) {
		ddr->cs1_bnds = ( (banksize(spd.row_dens) >> 8)
				  | ((banksize(spd.row_dens) >> 23) - 1) );
		ddr->cs1_config = ( 1<<31
				    | (spd.nrow_addr-12) << 8
				    | (spd.ncol_addr-8) );
		debug("cs1_bnds = 0x%08x\n",ddr->cs1_bnds);
		debug("cs1_config = 0x%08x\n",ddr->cs1_config);
	}

	if (spd.mem_type != 0x07) {
		puts("No DDR module found!\n");
		return 0;
	}

	/*
	 * Figure out memory size in Megabytes.
	 */
	memsize = spd.nrows * banksize(spd.row_dens) / 0x100000;

	/*
	 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
	 */
	law_size = 19 + __ilog2(memsize);

	/*
	 * Determine size of each TLB1 entry.
	 */
	switch (memsize) {
	case 16:
	case 32:
		tlb_size = BOOKE_PAGESZ_16M;
		break;
	case 64:
	case 128:
		tlb_size = BOOKE_PAGESZ_64M;
		break;
	case 256:
	case 512:
	case 1024:
	case 2048:
		tlb_size = BOOKE_PAGESZ_256M;
		break;
	default:
		puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G DDR I are supported.\n");
		return 0;
		break;
	}

	/*
	 * Configure DDR TLB1 entries.
	 * Starting at TLB1 8, use no more than 8 TLB1 entries.
	 */
	ram_tlb_index = 8;
	ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE;
	while (ram_tlb_address < (memsize * 1024 * 1024)
	      && ram_tlb_index < 16) {
		mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0));
		mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size));
		mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
				      0, 0, 0, 0, 0, 0, 0, 0));
		mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
				      0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
		asm volatile("isync;msync;tlbwe;isync");

		debug("DDR:MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0));
		debug("DDR:MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size));
		debug("DDR:MAS2=0x%08x\n",
		      TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
				0, 0, 0, 0, 0, 0, 0, 0));
		debug("DDR:MAS3=0x%08x\n",
		      TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
				0, 0, 0, 0, 0, 1, 0, 1, 0, 1));

		ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2));
		ram_tlb_index++;
	}

	/*
	 * Set up LAWBAR for all of DDR.
	 */
	ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
	ecm->lawar1 = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
	debug("DDR:LAWBAR1=0x%08x\n", ecm->lawbar1);
	debug("DDR:LARAR1=0x%08x\n", ecm->lawar1);

	/*
	 * find the largest CAS
	 */
	if(spd.cas_lat & 0x40) {
		caslat = 7;
	} else if (spd.cas_lat & 0x20) {
		caslat = 6;
	} else if (spd.cas_lat & 0x10) {
		caslat = 5;
	} else if (spd.cas_lat & 0x08) {
		caslat = 4;
	} else if (spd.cas_lat & 0x04) {
		caslat = 3;
	} else if (spd.cas_lat & 0x02) {
		caslat = 2;
	} else if (spd.cas_lat & 0x01) {
		caslat = 1;
	} else {
		puts("DDR:no valid CAS Latency information.\n");
		return 0;
	}

	tmp = 20000 / (((spd.clk_cycle & 0xF0) >> 4) * 10
		       + (spd.clk_cycle & 0x0f));
	debug("DDR:Module maximum data rate is: %dMhz\n", tmp);

	tmp1 = get_bus_freq(0) / 1000000;
	if (tmp1 < 230 && tmp1 >= 90 && tmp >= 230) {
		/* 90~230 range, treated as DDR 200 */
		if (spd.clk_cycle3 == 0xa0)
			caslat -= 2;
		else if(spd.clk_cycle2 == 0xa0)
			caslat--;
	} else if (tmp1 < 280 && tmp1 >= 230 && tmp >= 280) {
		/* 230-280 range, treated as DDR 266 */
		if (spd.clk_cycle3 == 0x75)
			caslat -= 2;
		else if (spd.clk_cycle2 == 0x75)
			caslat--;
	} else if (tmp1 < 350 && tmp1 >= 280 && tmp >= 350) {
		/* 280~350 range, treated as DDR 333 */
		if (spd.clk_cycle3 == 0x60)
			caslat -= 2;
		else if (spd.clk_cycle2 == 0x60)
			caslat--;
	} else if (tmp1 < 90 || tmp1 >= 350) {
		/* DDR rate out-of-range */
		puts("DDR:platform frequency is not fit for DDR rate\n");
		return 0;
	}

	/*
	 * note: caslat must also be programmed into ddr->sdram_mode
	 * register.
	 *
	 * note: WRREC(Twr) and WRTORD(Twtr) are not in SPD,
	 * use conservative value here.
	 */
	ddr->timing_cfg_1 =
	    (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) |
	     ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) |
	     ((picos_to_clk(spd.trcd * 250) & 0x07) << 20 ) |
	     ((caslat & 0x07) << 16 ) |
	     (((picos_to_clk(spd.sset[6] * 1000) - 8) & 0x0f) << 12 ) |
	     ( 0x300 ) |
	     ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | 1);

	ddr->timing_cfg_2 = 0x00000800;

	debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
	debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);

	/*
	 * Only DDR I is supported
	 * DDR I and II have different mode-register-set definition
	 */

	/* burst length is always 4 */
	switch(caslat) {
	case 2:
		ddr->sdram_mode = 0x52; /* 1.5 */
		break;
	case 3:
		ddr->sdram_mode = 0x22; /* 2.0 */
		break;
	case 4:
		ddr->sdram_mode = 0x62; /* 2.5 */
		break;
	case 5:
		ddr->sdram_mode = 0x32; /* 3.0 */
		break;
	default:
		puts("DDR:only CAS Latency 1.5, 2.0, 2.5, 3.0 is supported.\n");
		return 0;
	}
	debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);

	switch(spd.refresh) {
	case 0x00:
	case 0x80:
		tmp = picos_to_clk(15625000);
		break;
	case 0x01:
	case 0x81:
		tmp = picos_to_clk(3900000);
		break;
	case 0x02:
	case 0x82:
		tmp = picos_to_clk(7800000);
		break;
	case 0x03:
	case 0x83:
		tmp = picos_to_clk(31300000);
		break;
	case 0x04:
	case 0x84:
		tmp = picos_to_clk(62500000);
		break;
	case 0x05:
	case 0x85:
		tmp = picos_to_clk(125000000);
		break;
	default:
		tmp = 0x512;
		break;
	}

	/*
	 * Set BSTOPRE to 0x100 for page mode
	 * If auto-charge is used, set BSTOPRE = 0
	 */
	ddr->sdram_interval = ((tmp & 0x3fff) << 16) | 0x100;
	debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);

	/*
	 * Is this an ECC DDR chip?
	 */
#if defined(CONFIG_DDR_ECC)
	if (spd.config == 0x02) {
		ddr->err_disable = 0x0000000d;
		ddr->err_sbe = 0x00ff0000;
	}
	debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
	debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
#endif
	asm("sync;isync;msync");

	udelay(500);

#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
	/* Setup the clock control (8555 and later)
	 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
	 * SDRAM_CLK_CNTL[5-7] = Clock Adjust == 3 (3/4 cycle late)
	 */
	ddr->sdram_clk_cntl = 0x83000000;
#endif

	/*
	 * Figure out the settings for the sdram_cfg register.  Build up
	 * the entire register in 'tmp' before writing since the write into
	 * the register will actually enable the memory controller, and all
	 * settings must be done before enabling.
	 *
	 * sdram_cfg[0]   = 1 (ddr sdram logic enable)
	 * sdram_cfg[1]   = 1 (self-refresh-enable)
	 * sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM)
	 */
	tmp = 0xc2000000;

	/*
	 * sdram_cfg[3] = RD_EN - registered DIMM enable
	 *   A value of 0x26 indicates micron registered DIMMS (micron.com)
	 */
	if (spd.mod_attr == 0x26) {
		tmp |= 0x10000000;
	}

#if defined(CONFIG_DDR_ECC)
	/*
	 * If the user wanted ECC (enabled via sdram_cfg[2])
	 */
	if (spd.config == 0x02) {
		tmp |= 0x20000000;
	}
#endif

	/*
	 * REV1 uses 1T timing.
	 * REV2 may use 1T or 2T as configured by the user.
	 */
	{
		uint pvr = get_pvr();

		if (pvr != PVR_85xx_REV1) {
#if defined(CONFIG_DDR_2T_TIMING)
			/*
			 * Enable 2T timing by setting sdram_cfg[16].
			 */
			tmp |= 0x8000;
#endif
		}
	}

	ddr->sdram_cfg = tmp;

	asm("sync;isync;msync");
	udelay(500);

	debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);

	return memsize * 1024 * 1024;
}
#endif /* CONFIG_SPD_EEPROM */


#if defined(CONFIG_DDR_ECC)
/*
 * Initialize all of memory for ECC, then enable errors.
 */
void
ddr_enable_ecc(unsigned int dram_size)
{
	uint *p = 0;
	uint i = 0;
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ccsr_ddr_t *ddr= &immap->im_ddr;

	dma_init();

	for (*p = 0; p < (uint *)(8 * 1024); p++) {
		if (((unsigned int)p & 0x1f) == 0) {
			ppcDcbz((unsigned long) p);
		}
		*p = (unsigned int)0xdeadbeef;
		if (((unsigned int)p & 0x1c) == 0x1c) {
			ppcDcbf((unsigned long) p);
		}
	}

	/* 8K */
	dma_xfer((uint *)0x2000, 0x2000, (uint *)0);
	/* 16K */
	dma_xfer((uint *)0x4000, 0x4000, (uint *)0);
	/* 32K */
	dma_xfer((uint *)0x8000, 0x8000, (uint *)0);
	/* 64K */
	dma_xfer((uint *)0x10000, 0x10000, (uint *)0);
	/* 128k */
	dma_xfer((uint *)0x20000, 0x20000, (uint *)0);
	/* 256k */
	dma_xfer((uint *)0x40000, 0x40000, (uint *)0);
	/* 512k */
	dma_xfer((uint *)0x80000, 0x80000, (uint *)0);
	/* 1M */
	dma_xfer((uint *)0x100000, 0x100000, (uint *)0);
	/* 2M */
	dma_xfer((uint *)0x200000, 0x200000, (uint *)0);
	/* 4M */
	dma_xfer((uint *)0x400000, 0x400000, (uint *)0);

	for (i = 1; i < dram_size / 0x800000; i++) {
		dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
	}

	/*
	 * Enable errors for ECC.
	 */
	ddr->err_disable = 0x00000000;
	asm("sync;isync;msync");
}
#endif	/* CONFIG_DDR_ECC */