aboutsummaryrefslogtreecommitdiff
path: root/drivers/fpga/socfpga_arria10.c
blob: 96b195063e0802ec82eaaf7d6036e1828b0a1507 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2017-2019 Intel Corporation <www.intel.com>
 */
#include <image.h>
#include <log.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/arch/fpga_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/sdram.h>
#include <asm/arch/misc.h>
#include <altera.h>
#include <asm/arch/pinmux.h>
#include <common.h>
#include <dm.h>
#include <dm/ofnode.h>
#include <errno.h>
#include <fs_loader.h>
#include <wait_bit.h>
#include <watchdog.h>
#include <linux/bitops.h>
#include <linux/delay.h>

#define CFGWDTH_32	1
#define MIN_BITSTREAM_SIZECHECK	230
#define ENCRYPTION_OFFSET	69
#define COMPRESSION_OFFSET	229
#define FPGA_TIMEOUT_MSEC	1000  /* timeout in ms */
#define FPGA_TIMEOUT_CNT	0x1000000
#define DEFAULT_DDR_LOAD_ADDRESS	0x400
#define DDR_BUFFER_SIZE		0x100000

/* When reading bitstream from a filesystem, the size of the first read is
 * changed so that the subsequent reads are aligned to this value. This value
 * was chosen so that in subsequent reads the fat fs driver doesn't have to
 * allocate a temporary buffer in get_contents (assuming 8KiB clusters).
 */
#define MAX_FIRST_LOAD_SIZE	0x2000

DECLARE_GLOBAL_DATA_PTR;

static const struct socfpga_fpga_manager *fpga_manager_base =
		(void *)SOCFPGA_FPGAMGRREGS_ADDRESS;

static void fpgamgr_set_cd_ratio(unsigned long ratio);

static uint32_t fpgamgr_get_msel(void)
{
	u32 reg;

	reg = readl(&fpga_manager_base->imgcfg_stat);
	reg = (reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_MSEL_SET_MSD) >>
		ALT_FPGAMGR_IMGCFG_STAT_F2S_MSEL0_LSB;

	return reg;
}

static void fpgamgr_set_cfgwdth(int width)
{
	if (width)
		setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
			ALT_FPGAMGR_IMGCFG_CTL_02_CFGWIDTH_SET_MSK);
	else
		clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
			ALT_FPGAMGR_IMGCFG_CTL_02_CFGWIDTH_SET_MSK);
}

int is_fpgamgr_user_mode(void)
{
	return (readl(&fpga_manager_base->imgcfg_stat) &
		ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) != 0;
}

static int wait_for_user_mode(void)
{
	return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
		ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK,
		1, FPGA_TIMEOUT_MSEC, false);
}

static int wait_for_fifo_empty(void)
{
	return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
		ALT_FPGAMGR_IMGCFG_STAT_F2S_IMGCFG_FIFOEMPTY_SET_MSK,
		1, FPGA_TIMEOUT_MSEC, false);
}

int is_fpgamgr_early_user_mode(void)
{
	return (readl(&fpga_manager_base->imgcfg_stat) &
		ALT_FPGAMGR_IMGCFG_STAT_F2S_EARLY_USERMODE_SET_MSK) != 0;
}

int fpgamgr_wait_early_user_mode(void)
{
	u32 sync_data = 0xffffffff;
	u32 i = 0;
	unsigned start = get_timer(0);
	unsigned long cd_ratio;

	/* Getting existing CDRATIO */
	cd_ratio = (readl(&fpga_manager_base->imgcfg_ctrl_02) &
		ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK) >>
		ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_LSB;

	/* Using CDRATIO_X1 for better compatibility */
	fpgamgr_set_cd_ratio(CDRATIO_x1);

	while (!is_fpgamgr_early_user_mode()) {
		if (get_timer(start) > FPGA_TIMEOUT_MSEC)
			return -ETIMEDOUT;
		fpgamgr_program_write((const long unsigned int *)&sync_data,
				sizeof(sync_data));
		udelay(FPGA_TIMEOUT_MSEC);
		i++;
	}

	debug("FPGA: Additional %i sync word needed\n", i);

	/* restoring original CDRATIO */
	fpgamgr_set_cd_ratio(cd_ratio);

	return 0;
}

/* Read f2s_nconfig_pin and f2s_nstatus_pin; loop until de-asserted */
static int wait_for_nconfig_pin_and_nstatus_pin(void)
{
	unsigned long mask = ALT_FPGAMGR_IMGCFG_STAT_F2S_NCONFIG_PIN_SET_MSK |
				ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK;

	/*
	 * Poll until f2s_nconfig_pin and f2s_nstatus_pin; loop until
	 * de-asserted, timeout at 1000ms
	 */
	return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat, mask,
				 true, FPGA_TIMEOUT_MSEC, false);
}

static int wait_for_f2s_nstatus_pin(unsigned long value)
{
	/* Poll until f2s to specific value, timeout at 1000ms */
	return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
		ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK,
		value, FPGA_TIMEOUT_MSEC, false);
}

/* set CD ratio */
static void fpgamgr_set_cd_ratio(unsigned long ratio)
{
	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
		ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK);

	setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
		(ratio << ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_LSB) &
		ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK);
}

/* get the MSEL value, verify we are set for FPP configuration mode */
static int fpgamgr_verify_msel(void)
{
	u32 msel = fpgamgr_get_msel();

	if (msel & ~BIT(0)) {
		printf("Fail: read msel=%d\n", msel);
		return -EPERM;
	}

	return 0;
}

/*
 * Write cdratio and cdwidth based on whether the bitstream is compressed
 * and/or encoded
 */
static int fpgamgr_set_cdratio_cdwidth(unsigned int cfg_width, u32 *rbf_data,
				       size_t rbf_size)
{
	unsigned int cd_ratio;
	bool encrypt, compress;

	/*
         * According to the bitstream specification,
	 * both encryption and compression status are
         * in location before offset 230 of the buffer.
         */
	if (rbf_size < MIN_BITSTREAM_SIZECHECK)
		return -EINVAL;

	encrypt = (rbf_data[ENCRYPTION_OFFSET] >> 2) & 3;
	encrypt = encrypt != 0;

	compress = (rbf_data[COMPRESSION_OFFSET] >> 1) & 1;
	compress = !compress;

	debug("FPGA: Header word %d = %08x.\n", 69, rbf_data[69]);
	debug("FPGA: Header word %d = %08x.\n", 229, rbf_data[229]);
	debug("FPGA: Read from rbf header: encrypt=%d compress=%d.\n", encrypt,
	     compress);

	/*
	 * from the register map description of cdratio in imgcfg_ctrl_02:
	 *  Normal Configuration    : 32bit Passive Parallel
	 *  Partial Reconfiguration : 16bit Passive Parallel
	 */

	/*
	 * cd ratio is dependent on cfg width and whether the bitstream
	 * is encrypted and/or compressed.
	 *
	 * | width | encr. | compr. | cd ratio |
	 * |  16   |   0   |   0    |     1    |
	 * |  16   |   0   |   1    |     4    |
	 * |  16   |   1   |   0    |     2    |
	 * |  16   |   1   |   1    |     4    |
	 * |  32   |   0   |   0    |     1    |
	 * |  32   |   0   |   1    |     8    |
	 * |  32   |   1   |   0    |     4    |
	 * |  32   |   1   |   1    |     8    |
	 */
	if (!compress && !encrypt) {
		cd_ratio = CDRATIO_x1;
	} else {
		if (compress)
			cd_ratio = CDRATIO_x4;
		else
			cd_ratio = CDRATIO_x2;

		/* if 32 bit, double the cd ratio (so register
		   field setting is incremented) */
		if (cfg_width == CFGWDTH_32)
			cd_ratio += 1;
	}

	fpgamgr_set_cfgwdth(cfg_width);
	fpgamgr_set_cd_ratio(cd_ratio);

	return 0;
}

static int fpgamgr_reset(void)
{
	unsigned long reg;

	/* S2F_NCONFIG = 0 */
	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);

	/* Wait for f2s_nstatus == 0 */
	if (wait_for_f2s_nstatus_pin(0))
		return -ETIME;

	/* S2F_NCONFIG = 1 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);

	/* Wait for f2s_nstatus == 1 */
	if (wait_for_f2s_nstatus_pin(1))
		return -ETIME;

	/* read and confirm f2s_condone_pin = 0 and f2s_condone_oe = 1 */
	reg = readl(&fpga_manager_base->imgcfg_stat);
	if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) != 0)
		return -EPERM;

	if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_OE_SET_MSK) == 0)
		return -EPERM;

	return 0;
}

/* Start the FPGA programming by initialize the FPGA Manager */
int fpgamgr_program_init(u32 * rbf_data, size_t rbf_size)
{
	int ret;

	/* Step 1 */
	if (fpgamgr_verify_msel())
		return -EPERM;

	/* Step 2 */
	if (fpgamgr_set_cdratio_cdwidth(CFGWDTH_32, rbf_data, rbf_size))
		return -EPERM;

	/*
	 * Step 3:
	 * Make sure no other external devices are trying to interfere with
	 * programming:
	 */
	if (wait_for_nconfig_pin_and_nstatus_pin())
		return -ETIME;

	/*
	 * Step 4:
	 * Deassert the signal drives from HPS
	 *
	 * S2F_NCE = 1
	 * S2F_PR_REQUEST = 0
	 * EN_CFG_CTRL = 0
	 * EN_CFG_DATA = 0
	 * S2F_NCONFIG = 1
	 * S2F_NSTATUS_OE = 0
	 * S2F_CONDONE_OE = 0
	 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);

	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_PR_REQUEST_SET_MSK);

	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);

	setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);

	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NSTATUS_OE_SET_MSK |
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_CONDONE_OE_SET_MSK);

	/*
	 * Step 5:
	 * Enable overrides
	 * S2F_NENABLE_CONFIG = 0
	 * S2F_NENABLE_NCONFIG = 0
	 */
	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NENABLE_CONFIG_SET_MSK);
	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NCONFIG_SET_MSK);

	/*
	 * Disable driving signals that HPS doesn't need to drive.
	 * S2F_NENABLE_NSTATUS = 1
	 * S2F_NENABLE_CONDONE = 1
	 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NSTATUS_SET_MSK |
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_CONDONE_SET_MSK);

	/*
	 * Step 6:
	 * Drive chip select S2F_NCE = 0
	 */
	 clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);

	/* Step 7 */
	if (wait_for_nconfig_pin_and_nstatus_pin())
		return -ETIME;

	/* Step 8 */
	ret = fpgamgr_reset();

	if (ret)
		return ret;

	/*
	 * Step 9:
	 * EN_CFG_CTRL and EN_CFG_DATA = 1
	 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);

	return 0;
}

/* Ensure the FPGA entering config done */
static int fpgamgr_program_poll_cd(void)
{
	unsigned long reg, i;

	for (i = 0; i < FPGA_TIMEOUT_CNT; i++) {
		reg = readl(&fpga_manager_base->imgcfg_stat);
		if (reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK)
			return 0;

		if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK) == 0) {
			printf("nstatus == 0 while waiting for condone\n");
			return -EPERM;
		}
		schedule();
	}

	if (i == FPGA_TIMEOUT_CNT)
		return -ETIME;

	return 0;
}

/* Ensure the FPGA entering user mode */
static int fpgamgr_program_poll_usermode(void)
{
	unsigned long reg;
	int ret = 0;

	if (fpgamgr_dclkcnt_set(0xf))
		return -ETIME;

	ret = wait_for_user_mode();
	if (ret < 0) {
		printf("%s: Failed to enter user mode with ", __func__);
		printf("error code %d\n", ret);
		return ret;
	}

	/*
	 * Step 14:
	 * Stop DATA path and Dclk
	 * EN_CFG_CTRL and EN_CFG_DATA = 0
	 */
	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);

	/*
	 * Step 15:
	 * Disable overrides
	 * S2F_NENABLE_CONFIG = 1
	 * S2F_NENABLE_NCONFIG = 1
	 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NENABLE_CONFIG_SET_MSK);
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NCONFIG_SET_MSK);

	/* Disable chip select S2F_NCE = 1 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);

	/*
	 * Step 16:
	 * Final check
	 */
	reg = readl(&fpga_manager_base->imgcfg_stat);
	if (((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) !=
		ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) ||
	    ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) !=
		ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) ||
	    ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK) !=
		ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK))
		return -EPERM;

	return 0;
}

int fpgamgr_program_finish(void)
{
	/* Ensure the FPGA entering config done */
	int status = fpgamgr_program_poll_cd();

	if (status) {
		printf("FPGA: Poll CD failed with error code %d\n", status);
		return -EPERM;
	}

	/* Ensure the FPGA entering user mode */
	status = fpgamgr_program_poll_usermode();
	if (status) {
		printf("FPGA: Poll usermode failed with error code %d\n",
			status);
		return -EPERM;
	}

	printf("Full Configuration Succeeded.\n");

	return 0;
}

ofnode get_fpga_mgr_ofnode(ofnode from)
{
	return ofnode_by_compatible(from, "altr,socfpga-a10-fpga-mgr");
}

const char *get_fpga_filename(void)
{
	const char *fpga_filename = NULL;

	ofnode fpgamgr_node = get_fpga_mgr_ofnode(ofnode_null());

	if (ofnode_valid(fpgamgr_node))
		fpga_filename = ofnode_read_string(fpgamgr_node,
						"altr,bitstream");

	return fpga_filename;
}

static void get_rbf_image_info(struct rbf_info *rbf, u16 *buffer)
{
	/*
	 * Magic ID starting at:
	 * -> 1st dword[15:0] in periph.rbf
	 * -> 2nd dword[15:0] in core.rbf
	 * Note: dword == 32 bits
	 */
	u32 word_reading_max = 2;
	u32 i;

	for (i = 0; i < word_reading_max; i++) {
		if (*(buffer + i) == FPGA_SOCFPGA_A10_RBF_UNENCRYPTED) {
			rbf->security = unencrypted;
		} else if (*(buffer + i) == FPGA_SOCFPGA_A10_RBF_ENCRYPTED) {
			rbf->security = encrypted;
		} else if (*(buffer + i + 1) ==
				FPGA_SOCFPGA_A10_RBF_UNENCRYPTED) {
			rbf->security = unencrypted;
		} else if (*(buffer + i + 1) ==
				FPGA_SOCFPGA_A10_RBF_ENCRYPTED) {
			rbf->security = encrypted;
		} else {
			rbf->security = invalid;
			continue;
		}

		/* PERIPH RBF(buffer + i + 1), CORE RBF(buffer + i + 2) */
		if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_PERIPH) {
			rbf->section = periph_section;
			break;
		} else if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_CORE) {
			rbf->section = core_section;
			break;
		} else if (*(buffer + i + 2) == FPGA_SOCFPGA_A10_RBF_PERIPH) {
			rbf->section = periph_section;
			break;
		} else if (*(buffer + i + 2) == FPGA_SOCFPGA_A10_RBF_CORE) {
			rbf->section = core_section;
			break;
		}

		rbf->section = unknown;
		break;

		schedule();
	}
}

#ifdef CONFIG_FS_LOADER
static int first_loading_rbf_to_buffer(struct udevice *dev,
				struct fpga_loadfs_info *fpga_loadfs,
				u32 *buffer, size_t *buffer_bsize,
				size_t *buffer_bsize_ori)
{
	u32 *buffer_p = (u32 *)*buffer;
	u32 *loadable = buffer_p;
	size_t buffer_size = *buffer_bsize;
	size_t fit_size;
	int ret, i, count, confs_noffset, images_noffset, rbf_offset, rbf_size;
	const char *fpga_node_name = NULL;
	const char *uname = NULL;

	/* Load image header into buffer */
	ret = request_firmware_into_buf(dev,
					fpga_loadfs->fpga_fsinfo->filename,
					buffer_p, sizeof(struct legacy_img_hdr),
					0);
	if (ret < 0) {
		debug("FPGA: Failed to read image header from flash.\n");
		return -ENOENT;
	}

	if (image_get_magic((struct legacy_img_hdr *)buffer_p) != FDT_MAGIC) {
		debug("FPGA: No FDT magic was found.\n");
		return -EBADF;
	}

	fit_size = fdt_totalsize(buffer_p);

	if (fit_size > buffer_size) {
		debug("FPGA: FIT image is larger than available buffer.\n");
		debug("Please use FIT external data or increasing buffer.\n");
		return -ENOMEM;
	}

	/* Load entire FIT into buffer */
	ret = request_firmware_into_buf(dev,
					fpga_loadfs->fpga_fsinfo->filename,
					buffer_p, fit_size, 0);
	if (ret < 0)
		return ret;

	ret = fit_check_format(buffer_p, IMAGE_SIZE_INVAL);
	if (ret) {
		debug("FPGA: No valid FIT image was found.\n");
		return ret;
	}

	confs_noffset = fdt_path_offset(buffer_p, FIT_CONFS_PATH);
	images_noffset = fdt_path_offset(buffer_p, FIT_IMAGES_PATH);
	if (confs_noffset < 0 || images_noffset < 0) {
		debug("FPGA: No Configurations or images nodes were found.\n");
		return -ENOENT;
	}

	/* Get default configuration unit name from default property */
	confs_noffset = fit_conf_get_node(buffer_p, NULL);
	if (confs_noffset < 0) {
		debug("FPGA: No default configuration was found in config.\n");
		return -ENOENT;
	}

	count = fit_conf_get_prop_node_count(buffer_p, confs_noffset,
					    FIT_FPGA_PROP);
	if (count < 0) {
		debug("FPGA: Invalid configuration format for FPGA node.\n");
		return count;
	}
	debug("FPGA: FPGA node count: %d\n", count);

	for (i = 0; i < count; i++) {
		images_noffset = fit_conf_get_prop_node_index(buffer_p,
							     confs_noffset,
							     FIT_FPGA_PROP, i);
		uname = fit_get_name(buffer_p, images_noffset, NULL);
		if (uname) {
			debug("FPGA: %s\n", uname);

			if (strstr(uname, "fpga-periph") &&
				(!is_fpgamgr_early_user_mode() ||
				is_fpgamgr_user_mode() ||
				is_periph_program_force())) {
				fpga_node_name = uname;
				printf("FPGA: Start to program ");
				printf("peripheral/full bitstream ...\n");
				break;
			} else if (strstr(uname, "fpga-core") &&
					(is_fpgamgr_early_user_mode() &&
					!is_fpgamgr_user_mode())) {
				fpga_node_name = uname;
				printf("FPGA: Start to program core ");
				printf("bitstream ...\n");
				break;
			}
		}
		schedule();
	}

	if (!fpga_node_name) {
		debug("FPGA: No suitable bitstream was found, count: %d.\n", i);
		return 1;
	}

	images_noffset = fit_image_get_node(buffer_p, fpga_node_name);
	if (images_noffset < 0) {
		debug("FPGA: No node '%s' was found in FIT.\n",
		     fpga_node_name);
		return -ENOENT;
	}

	if (!fit_image_get_data_position(buffer_p, images_noffset,
					&rbf_offset)) {
		debug("FPGA: Data position was found.\n");
	} else if (!fit_image_get_data_offset(buffer_p, images_noffset,
		  &rbf_offset)) {
		/*
		 * For FIT with external data, figure out where
		 * the external images start. This is the base
		 * for the data-offset properties in each image.
		 */
		rbf_offset += ((fdt_totalsize(buffer_p) + 3) & ~3);
		debug("FPGA: Data offset was found.\n");
	} else {
		debug("FPGA: No data position/offset was found.\n");
		return -ENOENT;
	}

	ret = fit_image_get_data_size(buffer_p, images_noffset, &rbf_size);
	if (ret < 0) {
		debug("FPGA: No data size was found (err=%d).\n", ret);
		return -ENOENT;
	}

	if (gd->ram_size < rbf_size) {
		debug("FPGA: Using default OCRAM buffer and size.\n");
	} else {
		ret = fit_image_get_load(buffer_p, images_noffset,
					(ulong *)loadable);
		if (ret < 0) {
			buffer_p = (u32 *)DEFAULT_DDR_LOAD_ADDRESS;
			debug("FPGA: No loadable was found.\n");
			debug("FPGA: Using default DDR load address: 0x%x .\n",
			     DEFAULT_DDR_LOAD_ADDRESS);
		} else {
			buffer_p = (u32 *)*loadable;
			debug("FPGA: Found loadable address = 0x%x.\n",
			     *loadable);
		}

		buffer_size = rbf_size;
		*buffer_bsize_ori = DDR_BUFFER_SIZE;
	}

	debug("FPGA: External data: offset = 0x%x, size = 0x%x.\n",
	      rbf_offset, rbf_size);

	fpga_loadfs->remaining = rbf_size;

	/*
	 * Determine buffer size vs bitstream size, and calculating number of
	 * chunk by chunk transfer is required due to smaller buffer size
	 * compare to bitstream
	 */

	if (buffer_size > MAX_FIRST_LOAD_SIZE)
		buffer_size = MAX_FIRST_LOAD_SIZE;

	if (rbf_size <= buffer_size) {
		/* Loading whole bitstream into buffer */
		buffer_size = rbf_size;
		fpga_loadfs->remaining = 0;
	} else {
		buffer_size -= rbf_offset % buffer_size;
		fpga_loadfs->remaining -= buffer_size;
	}

	fpga_loadfs->offset = rbf_offset;
	/* Loading bitstream into buffer */
	ret = request_firmware_into_buf(dev,
					fpga_loadfs->fpga_fsinfo->filename,
					buffer_p, buffer_size,
					fpga_loadfs->offset);
	if (ret < 0) {
		debug("FPGA: Failed to read bitstream from flash.\n");
		return -ENOENT;
	}

	/* Getting info about bitstream types */
	get_rbf_image_info(&fpga_loadfs->rbfinfo, (u16 *)buffer_p);

	/* Update next reading bitstream offset */
	fpga_loadfs->offset += buffer_size;

	/* Update the final addr for bitstream */
	*buffer = (u32)buffer_p;

	/* Update the size of bitstream to be programmed into FPGA */
	*buffer_bsize = buffer_size;

	return 0;
}

static int subsequent_loading_rbf_to_buffer(struct udevice *dev,
					struct fpga_loadfs_info *fpga_loadfs,
					u32 *buffer, size_t *buffer_bsize)
{
	int ret = 0;
	u32 *buffer_p = (u32 *)*buffer;

	/* Read the bitstream chunk by chunk. */
	if (fpga_loadfs->remaining > *buffer_bsize) {
		fpga_loadfs->remaining -= *buffer_bsize;
	} else {
		*buffer_bsize = fpga_loadfs->remaining;
		fpga_loadfs->remaining = 0;
	}

	ret = request_firmware_into_buf(dev,
					fpga_loadfs->fpga_fsinfo->filename,
					buffer_p, *buffer_bsize,
					fpga_loadfs->offset);
	if (ret < 0) {
		debug("FPGA: Failed to read bitstream from flash.\n");
		return -ENOENT;
	}

	/* Update next reading bitstream offset */
	fpga_loadfs->offset += *buffer_bsize;

	return 0;
}

int socfpga_loadfs(fpga_fs_info *fpga_fsinfo, const void *buf, size_t bsize,
			u32 offset)
{
	struct fpga_loadfs_info fpga_loadfs;
	struct udevice *dev;
	int status, ret;
	u32 buffer = (uintptr_t)buf;
	size_t buffer_sizebytes = bsize;
	size_t buffer_sizebytes_ori = bsize;
	size_t total_sizeof_image = 0;
	ofnode node;

	node = get_fpga_mgr_ofnode(ofnode_null());
	if (!ofnode_valid(node)) {
		debug("FPGA: FPGA manager node was not found.\n");
		return -ENOENT;
	}

	ret = get_fs_loader(&dev);
	if (ret)
		return ret;

	memset(&fpga_loadfs, 0, sizeof(fpga_loadfs));

	fpga_loadfs.fpga_fsinfo = fpga_fsinfo;
	fpga_loadfs.offset = offset;

	printf("FPGA: Checking FPGA configuration setting ...\n");

	/*
	 * Note: Both buffer and buffer_sizebytes values can be altered by
	 * function below.
	 */
	ret = first_loading_rbf_to_buffer(dev, &fpga_loadfs, &buffer,
					   &buffer_sizebytes,
					   &buffer_sizebytes_ori);
	if (ret == 1) {
		printf("FPGA: Skipping configuration ...\n");
		return 0;
	} else if (ret) {
		return ret;
	}

	if (fpga_loadfs.rbfinfo.section == core_section &&
		!(is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) {
		debug("FPGA : Must be in Early Release mode to program ");
		debug("core bitstream.\n");
		return -EPERM;
	}

	/* Disable all signals from HPS peripheral controller to FPGA */
	writel(0, socfpga_get_sysmgr_addr() + SYSMGR_A10_FPGAINTF_EN_GLOBAL);

	/* Disable all axi bridges (hps2fpga, lwhps2fpga & fpga2hps) */
	socfpga_bridges_reset();

	if (fpga_loadfs.rbfinfo.section == periph_section) {
		/* Initialize the FPGA Manager */
		status = fpgamgr_program_init((u32 *)buffer, buffer_sizebytes);
		if (status) {
			debug("FPGA: Init with peripheral bitstream failed.\n");
			return -EPERM;
		}
	}

	/* Transfer bitstream to FPGA Manager */
	fpgamgr_program_write((void *)buffer, buffer_sizebytes);

	total_sizeof_image += buffer_sizebytes;

	while (fpga_loadfs.remaining) {
		ret = subsequent_loading_rbf_to_buffer(dev,
							&fpga_loadfs,
							&buffer,
							&buffer_sizebytes_ori);

		if (ret)
			return ret;

		/* Transfer data to FPGA Manager */
		fpgamgr_program_write((void *)buffer,
					buffer_sizebytes_ori);

		total_sizeof_image += buffer_sizebytes_ori;

		schedule();
	}
	wait_for_fifo_empty();

	if (fpga_loadfs.rbfinfo.section == periph_section) {
		if (fpgamgr_wait_early_user_mode() != -ETIMEDOUT) {
			config_pins(gd->fdt_blob, "shared");
			puts("FPGA: Early Release Succeeded.\n");
		} else {
			debug("FPGA: Failed to see Early Release.\n");
			return -EIO;
		}

		/* For monolithic bitstream */
		if (is_fpgamgr_user_mode()) {
			/* Ensure the FPGA entering config done */
			status = fpgamgr_program_finish();
			if (status)
				return status;

			config_pins(gd->fdt_blob, "fpga");
			puts("FPGA: Enter user mode.\n");
		}
	} else if (fpga_loadfs.rbfinfo.section == core_section) {
		/* Ensure the FPGA entering config done */
		status = fpgamgr_program_finish();
		if (status)
			return status;

		config_pins(gd->fdt_blob, "fpga");
		puts("FPGA: Enter user mode.\n");
	} else {
		debug("FPGA: Config Error: Unsupported bitstream type.\n");
		return -ENOEXEC;
	}

	return (int)total_sizeof_image;
}

void fpgamgr_program(const void *buf, size_t bsize, u32 offset)
{
	fpga_fs_info fpga_fsinfo;

	fpga_fsinfo.filename = get_fpga_filename();

	if (fpga_fsinfo.filename)
		socfpga_loadfs(&fpga_fsinfo, buf, bsize, offset);
}
#endif

/* This function is used to load the core bitstream from the OCRAM. */
int socfpga_load(Altera_desc *desc, const void *rbf_data, size_t rbf_size)
{
	unsigned long status;
	struct rbf_info rbfinfo;

	memset(&rbfinfo, 0, sizeof(rbfinfo));

	/* Disable all signals from hps peripheral controller to fpga */
	writel(0, socfpga_get_sysmgr_addr() + SYSMGR_A10_FPGAINTF_EN_GLOBAL);

	/* Disable all axi bridge (hps2fpga, lwhps2fpga & fpga2hps) */
	socfpga_bridges_reset();

	/* Getting info about bitstream types */
	get_rbf_image_info(&rbfinfo, (u16 *)rbf_data);

	if (rbfinfo.section == periph_section) {
		/* Initialize the FPGA Manager */
		status = fpgamgr_program_init((u32 *)rbf_data, rbf_size);
		if (status)
			return status;
	}

	if (rbfinfo.section == core_section &&
		!(is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) {
		debug("FPGA : Must be in early release mode to program ");
		debug("core bitstream.\n");
		return -EPERM;
	}

	/* Write the bitstream to FPGA Manager */
	fpgamgr_program_write(rbf_data, rbf_size);

	status = fpgamgr_program_finish();
	if (status)
		return status;

	config_pins(gd->fdt_blob, "fpga");
	puts("FPGA: Enter user mode.\n");

	return status;
}