1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2022 Sean Anderson <sean.anderson@seco.com>
*
* This driver supports the Security Fuse Processor device found on some
* Layerscape processors. At the moment, we only support a few processors.
* This driver was written with reference to the Layerscape SDK User
* Guide [1] and the ATF SFP driver [2].
*
* [1] https://docs.nxp.com/bundle/GUID-487B2E69-BB19-42CB-AC38-7EF18C0FE3AE/page/GUID-27FC40AD-3321-4A82-B29E-7BB49EE94F23.html
* [2] https://source.codeaurora.org/external/qoriq/qoriq-components/atf/tree/drivers/nxp/sfp?h=github.com/master
*/
#define LOG_CATEGORY UCLASS_MISC
#include <common.h>
#include <clk.h>
#include <fuse.h>
#include <misc.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <dm/read.h>
#include <linux/bitfield.h>
#include <power/regulator.h>
DECLARE_GLOBAL_DATA_PTR;
#define SFP_INGR 0x20
#define SFP_SVHESR 0x24
#define SFP_SFPCR 0x28
#define SFP_START 0x200
#define SFP_END 0x284
#define SFP_SIZE (SFP_END - SFP_START + 4)
#define SFP_INGR_ERR BIT(8)
#define SFP_INGR_INST GENMASK(7, 0)
#define SFP_INGR_READFB 0x01
#define SFP_INGR_PROGFB 0x02
#define SFP_SFPCR_PPW GENMASK(15, 0)
enum ls2_sfp_ioctl {
LS2_SFP_IOCTL_READ,
LS2_SFP_IOCTL_PROG,
};
/**
* struct ls2_sfp_priv - private data for LS2 SFP
* @base: Base address of SFP
* @supply: The (optional) supply for TA_PROG_SFP
* @programmed: Whether we've already programmed the fuses since the last
* reset. The SFP has a *very* limited amount of programming
* cycles (two to six, depending on the model), so we try and
* prevent accidentally performing additional programming
* cycles.
* @dirty: Whether the mirror registers have been written to (overridden)
* since we've last read the fuses (either as part of the reset
* process or using a READFB instruction). There is a much larger,
* but still finite, limit on the number of SFP read cycles (around
* 300,000), so we try and minimize reads as well.
*/
struct ls2_sfp_priv {
void __iomem *base;
struct udevice *supply;
bool programmed, dirty;
};
static u32 ls2_sfp_readl(struct ls2_sfp_priv *priv, ulong off)
{
u32 val = be32_to_cpu(readl(priv->base + off));
log_debug("%08x = readl(%p)\n", val, priv->base + off);
return val;
}
static void ls2_sfp_writel(struct ls2_sfp_priv *priv, ulong val, ulong off)
{
log_debug("writel(%08lx, %p)\n", val, priv->base + off);
writel(cpu_to_be32(val), priv->base + off);
}
static bool ls2_sfp_validate(struct udevice *dev, int offset, int size)
{
if (offset < 0 || size < 0) {
dev_notice(dev, "size and offset must be positive\n");
return false;
}
if (offset & 3 || size & 3) {
dev_notice(dev, "size and offset must be multiples of 4\n");
return false;
}
if (offset + size > SFP_SIZE) {
dev_notice(dev, "size + offset must be <= %#x\n", SFP_SIZE);
return false;
}
return true;
}
static int ls2_sfp_read(struct udevice *dev, int offset, void *buf_bytes,
int size)
{
int i;
struct ls2_sfp_priv *priv = dev_get_priv(dev);
u32 *buf = buf_bytes;
if (!ls2_sfp_validate(dev, offset, size))
return -EINVAL;
for (i = 0; i < size; i += 4)
buf[i >> 2] = ls2_sfp_readl(priv, SFP_START + offset + i);
return size;
}
static int ls2_sfp_write(struct udevice *dev, int offset,
const void *buf_bytes, int size)
{
int i;
struct ls2_sfp_priv *priv = dev_get_priv(dev);
const u32 *buf = buf_bytes;
if (!ls2_sfp_validate(dev, offset, size))
return -EINVAL;
for (i = 0; i < size; i += 4)
ls2_sfp_writel(priv, buf[i >> 2], SFP_START + offset + i);
priv->dirty = true;
return size;
}
static int ls2_sfp_check_secret(struct udevice *dev)
{
struct ls2_sfp_priv *priv = dev_get_priv(dev);
u32 svhesr = ls2_sfp_readl(priv, SFP_SVHESR);
if (svhesr) {
dev_warn(dev, "secret value hamming error not zero: %08x\n",
svhesr);
return -EIO;
}
return 0;
}
static int ls2_sfp_transaction(struct ls2_sfp_priv *priv, ulong inst)
{
u32 ingr;
ls2_sfp_writel(priv, inst, SFP_INGR);
do {
ingr = ls2_sfp_readl(priv, SFP_INGR);
} while (FIELD_GET(SFP_INGR_INST, ingr));
return FIELD_GET(SFP_INGR_ERR, ingr) ? -EIO : 0;
}
static int ls2_sfp_ioctl(struct udevice *dev, unsigned long request, void *buf)
{
int ret;
struct ls2_sfp_priv *priv = dev_get_priv(dev);
switch (request) {
case LS2_SFP_IOCTL_READ:
if (!priv->dirty) {
dev_dbg(dev, "ignoring read request, since fuses are not dirty\n");
return 0;
}
ret = ls2_sfp_transaction(priv, SFP_INGR_READFB);
if (ret) {
dev_err(dev, "error reading fuses\n");
return ret;
}
ls2_sfp_check_secret(dev);
priv->dirty = false;
return 0;
case LS2_SFP_IOCTL_PROG:
if (priv->programmed) {
dev_warn(dev, "fuses already programmed\n");
return -EPERM;
}
ret = ls2_sfp_check_secret(dev);
if (ret)
return ret;
if (priv->supply) {
ret = regulator_set_enable(priv->supply, true);
if (ret)
return ret;
}
ret = ls2_sfp_transaction(priv, SFP_INGR_PROGFB);
priv->programmed = true;
if (priv->supply)
regulator_set_enable(priv->supply, false);
if (ret)
dev_err(dev, "error programming fuses\n");
return ret;
default:
dev_dbg(dev, "unknown ioctl %lu\n", request);
return -EINVAL;
}
}
static const struct misc_ops ls2_sfp_ops = {
.read = ls2_sfp_read,
.write = ls2_sfp_write,
.ioctl = ls2_sfp_ioctl,
};
static int ls2_sfp_probe(struct udevice *dev)
{
int ret;
struct clk clk;
struct ls2_sfp_priv *priv = dev_get_priv(dev);
ulong rate;
priv->base = dev_read_addr_ptr(dev);
if (!priv->base) {
dev_dbg(dev, "could not read register base\n");
return -EINVAL;
}
ret = device_get_supply_regulator(dev, "ta-sfp-prog-supply", &priv->supply);
if (ret && ret != -ENODEV && ret != -ENOSYS) {
dev_dbg(dev, "problem getting supply (err %d)\n", ret);
return ret;
}
ret = clk_get_by_name(dev, "sfp", &clk);
if (ret == -ENOSYS) {
rate = gd->bus_clk / 4;
} else if (ret) {
dev_dbg(dev, "could not get clock (err %d)\n", ret);
return ret;
} else {
ret = clk_enable(&clk);
if (ret) {
dev_dbg(dev, "could not enable clock (err %d)\n", ret);
return ret;
}
rate = clk_get_rate(&clk);
clk_free(&clk);
if (!rate || IS_ERR_VALUE(rate)) {
ret = rate ? rate : -ENOENT;
dev_dbg(dev, "could not get clock rate (err %d)\n",
ret);
return ret;
}
}
/* sfp clock in MHz * 12 */
ls2_sfp_writel(priv, FIELD_PREP(SFP_SFPCR_PPW, rate * 12 / 1000000),
SFP_SFPCR);
ls2_sfp_check_secret(dev);
return 0;
}
static const struct udevice_id ls2_sfp_ids[] = {
{ .compatible = "fsl,ls1021a-sfp" },
{ }
};
U_BOOT_DRIVER(ls2_sfp) = {
.name = "ls2_sfp",
.id = UCLASS_MISC,
.of_match = ls2_sfp_ids,
.probe = ls2_sfp_probe,
.ops = &ls2_sfp_ops,
.priv_auto = sizeof(struct ls2_sfp_priv),
};
static int ls2_sfp_device(struct udevice **dev)
{
int ret = uclass_get_device_by_driver(UCLASS_MISC,
DM_DRIVER_GET(ls2_sfp), dev);
if (ret)
log_debug("device not found (err %d)\n", ret);
return ret;
}
int fuse_read(u32 bank, u32 word, u32 *val)
{
int ret;
struct udevice *dev;
ret = ls2_sfp_device(&dev);
if (ret)
return ret;
ret = misc_ioctl(dev, LS2_SFP_IOCTL_READ, NULL);
if (ret)
return ret;
ret = misc_read(dev, word << 2, val, sizeof(*val));
return ret < 0 ? ret : 0;
}
int fuse_sense(u32 bank, u32 word, u32 *val)
{
int ret;
struct udevice *dev;
ret = ls2_sfp_device(&dev);
if (ret)
return ret;
ret = misc_read(dev, word << 2, val, sizeof(*val));
return ret < 0 ? ret : 0;
}
int fuse_prog(u32 bank, u32 word, u32 val)
{
int ret;
struct udevice *dev;
ret = ls2_sfp_device(&dev);
if (ret)
return ret;
ret = misc_write(dev, word << 2, &val, sizeof(val));
if (ret < 0)
return ret;
return misc_ioctl(dev, LS2_SFP_IOCTL_PROG, NULL);
}
int fuse_override(u32 bank, u32 word, u32 val)
{
int ret;
struct udevice *dev;
ret = ls2_sfp_device(&dev);
if (ret)
return ret;
ret = misc_write(dev, word << 2, &val, sizeof(val));
return ret < 0 ? ret : 0;
}
|