aboutsummaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/mxc_nand.c
blob: 936186f75e6ef7793bf2632c8371d599ce4b4c48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
/*
 * Copyright 2004-2007 Freescale Semiconductor, Inc.
 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
 * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 * MA 02110-1301, USA.
 */

#include <common.h>
#include <nand.h>
#include <linux/err.h>
#include <asm/io.h>
#if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35)
#include <asm/arch/imx-regs.h>
#endif

#define DRIVER_NAME "mxc_nand"

/*
 * TODO: Use same register defs here as nand_spl mxc nand driver.
 */
/*
 * Register map and bit definitions for the Freescale NAND Flash Controller
 * present in various i.MX devices.
 *
 * MX31 and MX27 have version 1 which has
 * 	4 512 byte main buffers and
 * 	4 16 byte spare buffers
 * 	to support up to 2K byte pagesize nand.
 * 	Reading or writing a 2K page requires 4 FDI/FDO cycles.
 *
 * MX25 has version 1.1 which has
 * 	8 512 byte main buffers and
 * 	8 64 byte spare buffers
 * 	to support up to 4K byte pagesize nand.
 * 	Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle.
 *      Also some of registers are moved and/or changed meaning as seen below.
 */
#if defined(CONFIG_MX31) || defined(CONFIG_MX27)
#define MXC_NFC_V1
#elif defined(CONFIG_MX25) || defined(CONFIG_MX35)
#define MXC_NFC_V1_1
#else
#warning "MXC NFC version not defined"
#endif

#if defined(MXC_NFC_V1)
#define NAND_MXC_NR_BUFS		4
#define NAND_MXC_SPARE_BUF_SIZE		16
#define NAND_MXC_REG_OFFSET		0xe00
#define is_mxc_nfc_11() 		0
#elif defined(MXC_NFC_V1_1)
#define NAND_MXC_NR_BUFS		8
#define NAND_MXC_SPARE_BUF_SIZE		64
#define NAND_MXC_REG_OFFSET		0x1e00
#define is_mxc_nfc_11() 		1
#else
#error "define CONFIG_NAND_MXC_VXXX to use mtd mxc nand driver"
#endif
struct nfc_regs {
	uint8_t main_area[NAND_MXC_NR_BUFS][0x200];
	uint8_t spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE];
	/*
	 * reserved size is offset of nfc registers
	 * minus total main and spare sizes
	 */
	uint8_t reserved1[NAND_MXC_REG_OFFSET
		- NAND_MXC_NR_BUFS * (512 + NAND_MXC_SPARE_BUF_SIZE)];
#if defined(MXC_NFC_V1)
	uint16_t nfc_buf_size;
	uint16_t reserved2;
	uint16_t nfc_buf_addr;
	uint16_t nfc_flash_addr;
	uint16_t nfc_flash_cmd;
	uint16_t nfc_config;
	uint16_t nfc_ecc_status_result;
	uint16_t nfc_rsltmain_area;
	uint16_t nfc_rsltspare_area;
	uint16_t nfc_wrprot;
	uint16_t nfc_unlockstart_blkaddr;
	uint16_t nfc_unlockend_blkaddr;
	uint16_t nfc_nf_wrprst;
	uint16_t nfc_config1;
	uint16_t nfc_config2;
#elif defined(MXC_NFC_V1_1)
	uint16_t reserved2[2];
	uint16_t nfc_buf_addr;
	uint16_t nfc_flash_addr;
	uint16_t nfc_flash_cmd;
	uint16_t nfc_config;
	uint16_t nfc_ecc_status_result;
	uint16_t nfc_ecc_status_result2;
	uint16_t nfc_spare_area_size;
	uint16_t nfc_wrprot;
	uint16_t reserved3[2];
	uint16_t nfc_nf_wrprst;
	uint16_t nfc_config1;
	uint16_t nfc_config2;
	uint16_t reserved4;
	uint16_t nfc_unlockstart_blkaddr;
	uint16_t nfc_unlockend_blkaddr;
	uint16_t nfc_unlockstart_blkaddr1;
	uint16_t nfc_unlockend_blkaddr1;
	uint16_t nfc_unlockstart_blkaddr2;
	uint16_t nfc_unlockend_blkaddr2;
	uint16_t nfc_unlockstart_blkaddr3;
	uint16_t nfc_unlockend_blkaddr3;
#endif
};

/*
 * Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
 * for Command operation
 */
#define NFC_CMD            0x1

/*
 * Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
 * for Address operation
 */
#define NFC_ADDR           0x2

/*
 * Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
 * for Input operation
 */
#define NFC_INPUT          0x4

/*
 * Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
 * for Data Output operation
 */
#define NFC_OUTPUT         0x8

/*
 * Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
 * for Read ID operation
 */
#define NFC_ID             0x10

/*
 * Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
 * for Read Status operation
 */
#define NFC_STATUS         0x20

/*
 * Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
 * Status operation
 */
#define NFC_INT            0x8000

#ifdef MXC_NFC_V1_1
#define NFC_4_8N_ECC	(1 << 0)
#else
#define NFC_4_8N_ECC	0
#endif
#define NFC_SP_EN           (1 << 2)
#define NFC_ECC_EN          (1 << 3)
#define NFC_BIG             (1 << 5)
#define NFC_RST             (1 << 6)
#define NFC_CE              (1 << 7)
#define NFC_ONE_CYCLE       (1 << 8)

typedef enum {false, true} bool;

struct mxc_nand_host {
	struct mtd_info		mtd;
	struct nand_chip	*nand;

	struct nfc_regs __iomem	*regs;
	int			spare_only;
	int			status_request;
	int			pagesize_2k;
	int			clk_act;
	uint16_t		col_addr;
	unsigned int		page_addr;
};

static struct mxc_nand_host mxc_host;
static struct mxc_nand_host *host = &mxc_host;

/* Define delays in microsec for NAND device operations */
#define TROP_US_DELAY   2000
/* Macros to get byte and bit positions of ECC */
#define COLPOS(x)  ((x) >> 3)
#define BITPOS(x) ((x) & 0xf)

/* Define single bit Error positions in Main & Spare area */
#define MAIN_SINGLEBIT_ERROR 0x4
#define SPARE_SINGLEBIT_ERROR 0x1

/* OOB placement block for use with hardware ecc generation */
#if defined(MXC_NFC_V1)
#ifndef CONFIG_SYS_NAND_LARGEPAGE
static struct nand_ecclayout nand_hw_eccoob = {
	.eccbytes = 5,
	.eccpos = {6, 7, 8, 9, 10},
	.oobfree = { {0, 5}, {11, 5}, }
};
#else
static struct nand_ecclayout nand_hw_eccoob2k = {
	.eccbytes = 20,
	.eccpos = {
		6, 7, 8, 9, 10,
		22, 23, 24, 25, 26,
		38, 39, 40, 41, 42,
		54, 55, 56, 57, 58,
	},
	.oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
};
#endif
#elif defined(MXC_NFC_V1_1)
#ifndef CONFIG_SYS_NAND_LARGEPAGE
static struct nand_ecclayout nand_hw_eccoob = {
	.eccbytes = 9,
	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
	.oobfree = { {2, 5} }
};
#else
static struct nand_ecclayout nand_hw_eccoob2k = {
	.eccbytes = 36,
	.eccpos = {
		7, 8, 9, 10, 11, 12, 13, 14, 15,
		23, 24, 25, 26, 27, 28, 29, 30, 31,
		39, 40, 41, 42, 43, 44, 45, 46, 47,
		55, 56, 57, 58, 59, 60, 61, 62, 63,
	},
	.oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
};
#endif
#endif

#ifdef CONFIG_MX27
static int is_16bit_nand(void)
{
	struct system_control_regs *sc_regs =
		(struct system_control_regs *)IMX_SYSTEM_CTL_BASE;

	if (readl(&sc_regs->fmcr) & NF_16BIT_SEL)
		return 1;
	else
		return 0;
}
#elif defined(CONFIG_MX31)
static int is_16bit_nand(void)
{
	struct clock_control_regs *sc_regs =
		(struct clock_control_regs *)CCM_BASE;

	if (readl(&sc_regs->rcsr) & CCM_RCSR_NF16B)
		return 1;
	else
		return 0;
}
#elif defined(CONFIG_MX25) || defined(CONFIG_MX35)
static int is_16bit_nand(void)
{
	struct ccm_regs *ccm =
		(struct ccm_regs *)IMX_CCM_BASE;

	if (readl(&ccm->rcsr) & CCM_RCSR_NF_16BIT_SEL)
		return 1;
	else
		return 0;
}
#else
#warning "8/16 bit NAND autodetection not supported"
static int is_16bit_nand(void)
{
	return 0;
}
#endif

static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
{
	uint32_t *d = dest;

	size >>= 2;
	while (size--)
		__raw_writel(__raw_readl(source++), d++);
	return dest;
}

/*
 * This function polls the NANDFC to wait for the basic operation to
 * complete by checking the INT bit of config2 register.
 */
static void wait_op_done(struct mxc_nand_host *host, int max_retries,
				uint16_t param)
{
	uint32_t tmp;

	while (max_retries-- > 0) {
		if (readw(&host->regs->nfc_config2) & NFC_INT) {
			tmp = readw(&host->regs->nfc_config2);
			tmp  &= ~NFC_INT;
			writew(tmp, &host->regs->nfc_config2);
			break;
		}
		udelay(1);
	}
	if (max_retries < 0) {
		MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
				__func__, param);
	}
}

/*
 * This function issues the specified command to the NAND device and
 * waits for completion.
 */
static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
{
	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);

	writew(cmd, &host->regs->nfc_flash_cmd);
	writew(NFC_CMD, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, cmd);
}

/*
 * This function sends an address (or partial address) to the
 * NAND device. The address is used to select the source/destination for
 * a NAND command.
 */
static void send_addr(struct mxc_nand_host *host, uint16_t addr)
{
	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);

	writew(addr, &host->regs->nfc_flash_addr);
	writew(NFC_ADDR, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, addr);
}

/*
 * This function requests the NANDFC to initiate the transfer
 * of data currently in the NANDFC RAM buffer to the NAND device.
 */
static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
			int spare_only)
{
	if (spare_only)
		MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only);

	if (is_mxc_nfc_11()) {
		int i;
		/*
		 *  The controller copies the 64 bytes of spare data from
		 *  the first 16 bytes of each of the 4 64 byte spare buffers.
		 *  Copy the contiguous data starting in spare_area[0] to
		 *  the four spare area buffers.
		 */
		for (i = 1; i < 4; i++) {
			void __iomem *src = &host->regs->spare_area[0][i * 16];
			void __iomem *dst = &host->regs->spare_area[i][0];

			mxc_nand_memcpy32(dst, src, 16);
		}
	}

	writew(buf_id, &host->regs->nfc_buf_addr);

	/* Configure spare or page+spare access */
	if (!host->pagesize_2k) {
		uint16_t config1 = readw(&host->regs->nfc_config1);
		if (spare_only)
			config1 |= NFC_SP_EN;
		else
			config1 &= ~(NFC_SP_EN);
		writew(config1, &host->regs->nfc_config1);
	}

	writew(NFC_INPUT, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, spare_only);
}

/*
 * Requests NANDFC to initiate the transfer of data from the
 * NAND device into in the NANDFC ram buffer.
 */
static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
		int spare_only)
{
	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);

	writew(buf_id, &host->regs->nfc_buf_addr);

	/* Configure spare or page+spare access */
	if (!host->pagesize_2k) {
		uint32_t config1 = readw(&host->regs->nfc_config1);
		if (spare_only)
			config1 |= NFC_SP_EN;
		else
			config1 &= ~NFC_SP_EN;
		writew(config1, &host->regs->nfc_config1);
	}

	writew(NFC_OUTPUT, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, spare_only);

	if (is_mxc_nfc_11()) {
		int i;

		/*
		 *  The controller copies the 64 bytes of spare data to
		 *  the first 16 bytes of each of the 4 spare buffers.
		 *  Make the data contiguous starting in spare_area[0].
		 */
		for (i = 1; i < 4; i++) {
			void __iomem *src = &host->regs->spare_area[i][0];
			void __iomem *dst = &host->regs->spare_area[0][i * 16];

			mxc_nand_memcpy32(dst, src, 16);
		}
	}
}

/* Request the NANDFC to perform a read of the NAND device ID. */
static void send_read_id(struct mxc_nand_host *host)
{
	uint16_t tmp;

	/* NANDFC buffer 0 is used for device ID output */
	writew(0x0, &host->regs->nfc_buf_addr);

	/* Read ID into main buffer */
	tmp = readw(&host->regs->nfc_config1);
	tmp &= ~NFC_SP_EN;
	writew(tmp, &host->regs->nfc_config1);

	writew(NFC_ID, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, 0);
}

/*
 * This function requests the NANDFC to perform a read of the
 * NAND device status and returns the current status.
 */
static uint16_t get_dev_status(struct mxc_nand_host *host)
{
	void __iomem *main_buf = host->regs->main_area[1];
	uint32_t store;
	uint16_t ret, tmp;
	/* Issue status request to NAND device */

	/* store the main area1 first word, later do recovery */
	store = readl(main_buf);
	/* NANDFC buffer 1 is used for device status */
	writew(1, &host->regs->nfc_buf_addr);

	/* Read status into main buffer */
	tmp = readw(&host->regs->nfc_config1);
	tmp &= ~NFC_SP_EN;
	writew(tmp, &host->regs->nfc_config1);

	writew(NFC_STATUS, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, 0);

	/*
	 *  Status is placed in first word of main buffer
	 * get status, then recovery area 1 data
	 */
	ret = readw(main_buf);
	writel(store, main_buf);

	return ret;
}

/* This function is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
	/*
	 * NFC handles R/B internally. Therefore, this function
	 * always returns status as ready.
	 */
	return 1;
}

#ifdef CONFIG_MXC_NAND_HWECC
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
	/*
	 * If HW ECC is enabled, we turn it on during init. There is
	 * no need to enable again here.
	 */
}

#ifdef MXC_NFC_V1_1
static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;
	uint16_t tmp = readw(&host->regs->nfc_config1);

	if (on)
		tmp |= NFC_ECC_EN;
	else
		tmp &= ~NFC_ECC_EN;
	writew(tmp, &host->regs->nfc_config1);
}

static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
				      struct nand_chip *chip,
				      int page, int sndcmd)
{
	struct mxc_nand_host *host = chip->priv;
	uint8_t *buf = chip->oob_poi;
	int length = mtd->oobsize;
	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	uint8_t *bufpoi = buf;
	int i, toread;

	MTDDEBUG(MTD_DEBUG_LEVEL0,
			"%s: Reading OOB area of page %u to oob %p\n",
			 __FUNCTION__, host->page_addr, buf);

	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
	for (i = 0; i < chip->ecc.steps; i++) {
		toread = min_t(int, length, chip->ecc.prepad);
		if (toread) {
			chip->read_buf(mtd, bufpoi, toread);
			bufpoi += toread;
			length -= toread;
		}
		bufpoi += chip->ecc.bytes;
		host->col_addr += chip->ecc.bytes;
		length -= chip->ecc.bytes;

		toread = min_t(int, length, chip->ecc.postpad);
		if (toread) {
			chip->read_buf(mtd, bufpoi, toread);
			bufpoi += toread;
			length -= toread;
		}
	}
	if (length > 0)
		chip->read_buf(mtd, bufpoi, length);

	_mxc_nand_enable_hwecc(mtd, 0);
	chip->cmdfunc(mtd, NAND_CMD_READOOB,
			mtd->writesize + chip->ecc.prepad, page);
	bufpoi = buf + chip->ecc.prepad;
	length = mtd->oobsize - chip->ecc.prepad;
	for (i = 0; i < chip->ecc.steps; i++) {
		toread = min_t(int, length, chip->ecc.bytes);
		chip->read_buf(mtd, bufpoi, toread);
		bufpoi += eccpitch;
		length -= eccpitch;
		host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
	}
	_mxc_nand_enable_hwecc(mtd, 1);
	return 1;
}

static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
					   struct nand_chip *chip,
					   uint8_t *buf,
					   int page)
{
	struct mxc_nand_host *host = chip->priv;
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
	uint8_t *oob = chip->oob_poi;
	int steps, size;
	int n;

	_mxc_nand_enable_hwecc(mtd, 0);
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, host->page_addr);

	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
		host->col_addr = n * eccsize;
		chip->read_buf(mtd, buf, eccsize);
		buf += eccsize;

		host->col_addr = mtd->writesize + n * eccpitch;
		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->read_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->read_buf(mtd, oob, size);
	_mxc_nand_enable_hwecc(mtd, 0);

	return 0;
}

static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
				       struct nand_chip *chip,
				       uint8_t *buf,
				       int page)
{
	struct mxc_nand_host *host = chip->priv;
	int n, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;

	MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n",
	      host->page_addr, buf, oob);

	/* first read the data area and the available portion of OOB */
	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
		int stat;

		host->col_addr = n * eccsize;

		chip->read_buf(mtd, p, eccsize);

		host->col_addr = mtd->writesize + n * eccpitch;

		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		stat = chip->ecc.correct(mtd, p, oob, NULL);

		if (stat < 0)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	/* Calculate remaining oob bytes */
	n = mtd->oobsize - (oob - chip->oob_poi);
	if (n)
		chip->read_buf(mtd, oob, n);

	/* Then switch ECC off and read the OOB area to get the ECC code */
	_mxc_nand_enable_hwecc(mtd, 0);
	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, host->page_addr);
	eccsteps = chip->ecc.steps;
	oob = chip->oob_poi + chip->ecc.prepad;
	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
		host->col_addr = mtd->writesize +
				 n * eccpitch +
				 chip->ecc.prepad;
		chip->read_buf(mtd, oob, eccbytes);
		oob += eccbytes + chip->ecc.postpad;
	}
	_mxc_nand_enable_hwecc(mtd, 1);
	return 0;
}

static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
				       struct nand_chip *chip, int page)
{
	struct mxc_nand_host *host = chip->priv;
	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int length = mtd->oobsize;
	int i, len, status, steps = chip->ecc.steps;
	const uint8_t *bufpoi = chip->oob_poi;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	for (i = 0; i < steps; i++) {
		len = min_t(int, length, eccpitch);

		chip->write_buf(mtd, bufpoi, len);
		bufpoi += len;
		length -= len;
		host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
	}
	if (length > 0)
		chip->write_buf(mtd, bufpoi, length);

	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);
	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

static void mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
					     struct nand_chip *chip,
					     const uint8_t *buf)
{
	struct mxc_nand_host *host = chip->priv;
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
	uint8_t *oob = chip->oob_poi;
	int steps, size;
	int n;

	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
		host->col_addr = n * eccsize;
		chip->write_buf(mtd, buf, eccsize);
		buf += eccsize;

		host->col_addr = mtd->writesize + n * eccpitch;

		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		host->col_addr += eccbytes;
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->write_buf(mtd, oob, size);
}

static void mxc_nand_write_page_syndrome(struct mtd_info *mtd,
					 struct nand_chip *chip,
					 const uint8_t *buf)
{
	struct mxc_nand_host *host = chip->priv;
	int i, n, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsteps = chip->ecc.steps;
	const uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;

	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

	for (i = n = 0;
	     eccsteps;
	     n++, eccsteps--, i += eccbytes, p += eccsize) {
		host->col_addr = n * eccsize;

		chip->write_buf(mtd, p, eccsize);

		host->col_addr = mtd->writesize + n * eccpitch;

		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->write_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	/* Calculate remaining oob bytes */
	i = mtd->oobsize - (oob - chip->oob_poi);
	if (i)
		chip->write_buf(mtd, oob, i);
}

static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
				 u_char *read_ecc, u_char *calc_ecc)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;
	uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);
	int subpages = mtd->writesize / nand_chip->subpagesize;
	int pg2blk_shift = nand_chip->phys_erase_shift -
			   nand_chip->page_shift;

	do {
		if ((ecc_status & 0xf) > 4) {
			static int last_bad = -1;

			if (last_bad != host->page_addr >> pg2blk_shift) {
				last_bad = host->page_addr >> pg2blk_shift;
				printk(KERN_DEBUG
				       "MXC_NAND: HWECC uncorrectable ECC error"
				       " in block %u page %u subpage %d\n",
				       last_bad, host->page_addr,
				       mtd->writesize / nand_chip->subpagesize
					    - subpages);
			}
			return -1;
		}
		ecc_status >>= 4;
		subpages--;
	} while (subpages > 0);

	return 0;
}
#else
#define mxc_nand_read_page_syndrome NULL
#define mxc_nand_read_page_raw_syndrome NULL
#define mxc_nand_read_oob_syndrome NULL
#define mxc_nand_write_page_syndrome NULL
#define mxc_nand_write_page_raw_syndrome NULL
#define mxc_nand_write_oob_syndrome NULL
#define mxc_nfc_11_nand_correct_data NULL

static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
				 u_char *read_ecc, u_char *calc_ecc)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;

	/*
	 * 1-Bit errors are automatically corrected in HW.  No need for
	 * additional correction.  2-Bit errors cannot be corrected by
	 * HW ECC, so we need to return failure
	 */
	uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);

	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
		MTDDEBUG(MTD_DEBUG_LEVEL0,
		      "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
		return -1;
	}

	return 0;
}
#endif

static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				  u_char *ecc_code)
{
	return 0;
}
#endif

static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;
	uint8_t ret = 0;
	uint16_t col;
	uint16_t __iomem *main_buf =
		(uint16_t __iomem *)host->regs->main_area[0];
	uint16_t __iomem *spare_buf =
		(uint16_t __iomem *)host->regs->spare_area[0];
	union {
		uint16_t word;
		uint8_t bytes[2];
	} nfc_word;

	/* Check for status request */
	if (host->status_request)
		return get_dev_status(host) & 0xFF;

	/* Get column for 16-bit access */
	col = host->col_addr >> 1;

	/* If we are accessing the spare region */
	if (host->spare_only)
		nfc_word.word = readw(&spare_buf[col]);
	else
		nfc_word.word = readw(&main_buf[col]);

	/* Pick upper/lower byte of word from RAM buffer */
	ret = nfc_word.bytes[host->col_addr & 0x1];

	/* Update saved column address */
	if (nand_chip->options & NAND_BUSWIDTH_16)
		host->col_addr += 2;
	else
		host->col_addr++;

	return ret;
}

static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;
	uint16_t col, ret;
	uint16_t __iomem *p;

	MTDDEBUG(MTD_DEBUG_LEVEL3,
	      "mxc_nand_read_word(col = %d)\n", host->col_addr);

	col = host->col_addr;
	/* Adjust saved column address */
	if (col < mtd->writesize && host->spare_only)
		col += mtd->writesize;

	if (col < mtd->writesize) {
		p = (uint16_t __iomem *)(host->regs->main_area[0] +
				(col >> 1));
	} else {
		p = (uint16_t __iomem *)(host->regs->spare_area[0] +
				((col - mtd->writesize) >> 1));
	}

	if (col & 1) {
		union {
			uint16_t word;
			uint8_t bytes[2];
		} nfc_word[3];

		nfc_word[0].word = readw(p);
		nfc_word[1].word = readw(p + 1);

		nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
		nfc_word[2].bytes[1] = nfc_word[1].bytes[0];

		ret = nfc_word[2].word;
	} else {
		ret = readw(p);
	}

	/* Update saved column address */
	host->col_addr = col + 2;

	return ret;
}

/*
 * Write data of length len to buffer buf. The data to be
 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 * Operation by the NFC, the data is written to NAND Flash
 */
static void mxc_nand_write_buf(struct mtd_info *mtd,
				const u_char *buf, int len)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;
	int n, col, i = 0;

	MTDDEBUG(MTD_DEBUG_LEVEL3,
	      "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
	      len);

	col = host->col_addr;

	/* Adjust saved column address */
	if (col < mtd->writesize && host->spare_only)
		col += mtd->writesize;

	n = mtd->writesize + mtd->oobsize - col;
	n = min(len, n);

	MTDDEBUG(MTD_DEBUG_LEVEL3,
	      "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);

	while (n > 0) {
		void __iomem *p;

		if (col < mtd->writesize) {
			p = host->regs->main_area[0] + (col & ~3);
		} else {
			p = host->regs->spare_area[0] -
						mtd->writesize + (col & ~3);
		}

		MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
		      __LINE__, p);

		if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
			union {
				uint32_t word;
				uint8_t bytes[4];
			} nfc_word;

			nfc_word.word = readl(p);
			nfc_word.bytes[col & 3] = buf[i++];
			n--;
			col++;

			writel(nfc_word.word, p);
		} else {
			int m = mtd->writesize - col;

			if (col >= mtd->writesize)
				m += mtd->oobsize;

			m = min(n, m) & ~3;

			MTDDEBUG(MTD_DEBUG_LEVEL3,
			      "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
			      __func__,  __LINE__, n, m, i, col);

			mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
			col += m;
			i += m;
			n -= m;
		}
	}
	/* Update saved column address */
	host->col_addr = col;
}

/*
 * Read the data buffer from the NAND Flash. To read the data from NAND
 * Flash first the data output cycle is initiated by the NFC, which copies
 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 */
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;
	int n, col, i = 0;

	MTDDEBUG(MTD_DEBUG_LEVEL3,
	      "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);

	col = host->col_addr;

	/* Adjust saved column address */
	if (col < mtd->writesize && host->spare_only)
		col += mtd->writesize;

	n = mtd->writesize + mtd->oobsize - col;
	n = min(len, n);

	while (n > 0) {
		void __iomem *p;

		if (col < mtd->writesize) {
			p = host->regs->main_area[0] + (col & ~3);
		} else {
			p = host->regs->spare_area[0] -
					mtd->writesize + (col & ~3);
		}

		if (((col | (int)&buf[i]) & 3) || n < 4) {
			union {
				uint32_t word;
				uint8_t bytes[4];
			} nfc_word;

			nfc_word.word = readl(p);
			buf[i++] = nfc_word.bytes[col & 3];
			n--;
			col++;
		} else {
			int m = mtd->writesize - col;

			if (col >= mtd->writesize)
				m += mtd->oobsize;

			m = min(n, m) & ~3;
			mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);

			col += m;
			i += m;
			n -= m;
		}
	}
	/* Update saved column address */
	host->col_addr = col;
}

/*
 * Used by the upper layer to verify the data in NAND Flash
 * with the data in the buf.
 */
static int mxc_nand_verify_buf(struct mtd_info *mtd,
				const u_char *buf, int len)
{
	u_char tmp[256];
	uint bsize;

	while (len) {
		bsize = min(len, 256);
		mxc_nand_read_buf(mtd, tmp, bsize);

		if (memcmp(buf, tmp, bsize))
			return 1;

		buf += bsize;
		len -= bsize;
	}

	return 0;
}

/*
 * This function is used by upper layer for select and
 * deselect of the NAND chip
 */
static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;

	switch (chip) {
	case -1:
		/* TODO: Disable the NFC clock */
		if (host->clk_act)
			host->clk_act = 0;
		break;
	case 0:
		/* TODO: Enable the NFC clock */
		if (!host->clk_act)
			host->clk_act = 1;
		break;

	default:
		break;
	}
}

/*
 * Used by the upper layer to write command to NAND Flash for
 * different operations to be carried out on NAND Flash
 */
void mxc_nand_command(struct mtd_info *mtd, unsigned command,
				int column, int page_addr)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;

	MTDDEBUG(MTD_DEBUG_LEVEL3,
	      "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
	      command, column, page_addr);

	/* Reset command state information */
	host->status_request = false;

	/* Command pre-processing step */
	switch (command) {

	case NAND_CMD_STATUS:
		host->col_addr = 0;
		host->status_request = true;
		break;

	case NAND_CMD_READ0:
		host->page_addr = page_addr;
		host->col_addr = column;
		host->spare_only = false;
		break;

	case NAND_CMD_READOOB:
		host->col_addr = column;
		host->spare_only = true;
		if (host->pagesize_2k)
			command = NAND_CMD_READ0; /* only READ0 is valid */
		break;

	case NAND_CMD_SEQIN:
		if (column >= mtd->writesize) {
			/*
			 * before sending SEQIN command for partial write,
			 * we need read one page out. FSL NFC does not support
			 * partial write. It always sends out 512+ecc+512+ecc
			 * for large page nand flash. But for small page nand
			 * flash, it does support SPARE ONLY operation.
			 */
			if (host->pagesize_2k) {
				/* call ourself to read a page */
				mxc_nand_command(mtd, NAND_CMD_READ0, 0,
						page_addr);
			}

			host->col_addr = column - mtd->writesize;
			host->spare_only = true;

			/* Set program pointer to spare region */
			if (!host->pagesize_2k)
				send_cmd(host, NAND_CMD_READOOB);
		} else {
			host->spare_only = false;
			host->col_addr = column;

			/* Set program pointer to page start */
			if (!host->pagesize_2k)
				send_cmd(host, NAND_CMD_READ0);
		}
		break;

	case NAND_CMD_PAGEPROG:
		send_prog_page(host, 0, host->spare_only);

		if (host->pagesize_2k && !is_mxc_nfc_11()) {
			/* data in 4 areas */
			send_prog_page(host, 1, host->spare_only);
			send_prog_page(host, 2, host->spare_only);
			send_prog_page(host, 3, host->spare_only);
		}

		break;
	}

	/* Write out the command to the device. */
	send_cmd(host, command);

	/* Write out column address, if necessary */
	if (column != -1) {
		/*
		 * MXC NANDFC can only perform full page+spare or
		 * spare-only read/write. When the upper layers perform
		 * a read/write buffer operation, we will use the saved
		 * column address to index into the full page.
		 */
		send_addr(host, 0);
		if (host->pagesize_2k)
			/* another col addr cycle for 2k page */
			send_addr(host, 0);
	}

	/* Write out page address, if necessary */
	if (page_addr != -1) {
		u32 page_mask = nand_chip->pagemask;
		do {
			send_addr(host, page_addr & 0xFF);
			page_addr >>= 8;
			page_mask >>= 8;
		} while (page_mask);
	}

	/* Command post-processing step */
	switch (command) {

	case NAND_CMD_RESET:
		break;

	case NAND_CMD_READOOB:
	case NAND_CMD_READ0:
		if (host->pagesize_2k) {
			/* send read confirm command */
			send_cmd(host, NAND_CMD_READSTART);
			/* read for each AREA */
			send_read_page(host, 0, host->spare_only);
			if (!is_mxc_nfc_11()) {
				send_read_page(host, 1, host->spare_only);
				send_read_page(host, 2, host->spare_only);
				send_read_page(host, 3, host->spare_only);
			}
		} else {
			send_read_page(host, 0, host->spare_only);
		}
		break;

	case NAND_CMD_READID:
		host->col_addr = 0;
		send_read_id(host);
		break;

	case NAND_CMD_PAGEPROG:
		break;

	case NAND_CMD_STATUS:
		break;

	case NAND_CMD_ERASE2:
		break;
	}
}

#ifdef MXC_NFC_V1_1
static void mxc_setup_config1(void)
{
	uint16_t tmp;

	tmp = readw(&host->regs->nfc_config1);
	tmp |= NFC_ONE_CYCLE;
	tmp |= NFC_4_8N_ECC;
	writew(tmp, &host->regs->nfc_config1);
	if (host->pagesize_2k)
		writew(64/2, &host->regs->nfc_spare_area_size);
	else
		writew(16/2, &host->regs->nfc_spare_area_size);
}
#else
#define mxc_setup_config1()
#endif

#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT

static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	0,
	.len = 4,
	.veroffs = 4,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	0,
	.len = 4,
	.veroffs = 4,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

#endif

int board_nand_init(struct nand_chip *this)
{
	struct mtd_info *mtd;
	uint16_t tmp;
	int err = 0;

#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
	this->options |= NAND_USE_FLASH_BBT;
	this->bbt_td = &bbt_main_descr;
	this->bbt_md = &bbt_mirror_descr;
#endif

	/* structures must be linked */
	mtd = &host->mtd;
	mtd->priv = this;
	host->nand = this;

	/* 5 us command delay time */
	this->chip_delay = 5;

	this->priv = host;
	this->dev_ready = mxc_nand_dev_ready;
	this->cmdfunc = mxc_nand_command;
	this->select_chip = mxc_nand_select_chip;
	this->read_byte = mxc_nand_read_byte;
	this->read_word = mxc_nand_read_word;
	this->write_buf = mxc_nand_write_buf;
	this->read_buf = mxc_nand_read_buf;
	this->verify_buf = mxc_nand_verify_buf;

	host->regs = (struct nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
	host->clk_act = 1;

#ifdef CONFIG_MXC_NAND_HWECC
	this->ecc.calculate = mxc_nand_calculate_ecc;
	this->ecc.hwctl = mxc_nand_enable_hwecc;
	this->ecc.correct = mxc_nand_correct_data;
	if (is_mxc_nfc_11()) {
		this->ecc.mode = NAND_ECC_HW_SYNDROME;
		this->ecc.read_page = mxc_nand_read_page_syndrome;
		this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
		this->ecc.read_oob = mxc_nand_read_oob_syndrome;
		this->ecc.write_page = mxc_nand_write_page_syndrome;
		this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
		this->ecc.write_oob = mxc_nand_write_oob_syndrome;
		this->ecc.bytes = 9;
		this->ecc.prepad = 7;
	} else {
		this->ecc.mode = NAND_ECC_HW;
	}

	host->pagesize_2k = 0;

	this->ecc.size = 512;
	tmp = readw(&host->regs->nfc_config1);
	tmp |= NFC_ECC_EN;
	writew(tmp, &host->regs->nfc_config1);
#else
	this->ecc.layout = &nand_soft_eccoob;
	this->ecc.mode = NAND_ECC_SOFT;
	tmp = readw(&host->regs->nfc_config1);
	tmp &= ~NFC_ECC_EN;
	writew(tmp, &host->regs->nfc_config1);
#endif
	/* Reset NAND */
	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);

	/*
	 * preset operation
	 * Unlock the internal RAM Buffer
	 */
	writew(0x2, &host->regs->nfc_config);

	/* Blocks to be unlocked */
	writew(0x0, &host->regs->nfc_unlockstart_blkaddr);
	/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
	 * unlockend_blkaddr, but the magic 0x4000 does not always work
	 * when writing more than some 32 megabytes (on 2k page nands)
	 * However 0xFFFF doesn't seem to have this kind
	 * of limitation (tried it back and forth several times).
	 * The linux kernel driver sets this to 0xFFFF for the v2 controller
	 * only, but probably this was not tested there for v1.
	 * The very same limitation seems to apply to this kernel driver.
	 * This might be NAND chip specific and the i.MX31 datasheet is
	 * extremely vague about the semantics of this register.
	 */
	writew(0xFFFF, &host->regs->nfc_unlockend_blkaddr);

	/* Unlock Block Command for given address range */
	writew(0x4, &host->regs->nfc_wrprot);

	/* NAND bus width determines access functions used by upper layer */
	if (is_16bit_nand())
		this->options |= NAND_BUSWIDTH_16;

#ifdef CONFIG_SYS_NAND_LARGEPAGE
	host->pagesize_2k = 1;
	this->ecc.layout = &nand_hw_eccoob2k;
#else
	host->pagesize_2k = 0;
	this->ecc.layout = &nand_hw_eccoob;
#endif
	mxc_setup_config1();
	return err;
}