aboutsummaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/mt7621_nand.c
blob: f6eddb84a9b800aa3f9c8e0b5c12f2a5adc3ec4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2022 MediaTek Inc. All rights reserved.
 *
 * Author: Weijie Gao <weijie.gao@mediatek.com>
 */

#include <log.h>
#include <nand.h>
#include <malloc.h>
#include <asm/addrspace.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/sizes.h>
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include "mt7621_nand.h"

/* NFI core registers */
#define NFI_CNFG			0x000
#define   CNFG_OP_MODE			GENMASK(14, 12)
#define     CNFG_OP_CUSTOM		6
#define   CNFG_AUTO_FMT_EN		BIT(9)
#define   CNFG_HW_ECC_EN		BIT(8)
#define   CNFG_BYTE_RW			BIT(6)
#define   CNFG_READ_MODE		BIT(1)

#define NFI_PAGEFMT			0x004
#define   PAGEFMT_FDM_ECC		GENMASK(15, 12)
#define   PAGEFMT_FDM			GENMASK(11, 8)
#define   PAGEFMT_SPARE			GENMASK(5, 4)
#define   PAGEFMT_PAGE			GENMASK(1, 0)

#define NFI_CON				0x008
#define   CON_NFI_SEC			GENMASK(15, 12)
#define   CON_NFI_BWR			BIT(9)
#define   CON_NFI_BRD			BIT(8)
#define   CON_NFI_RST			BIT(1)
#define   CON_FIFO_FLUSH		BIT(0)

#define NFI_ACCCON			0x00c
#define   ACCCON_POECS			GENMASK(31, 28)
#define   ACCCON_POECS_DEF		3
#define   ACCCON_PRECS			GENMASK(27, 22)
#define   ACCCON_PRECS_DEF		3
#define   ACCCON_C2R			GENMASK(21, 16)
#define   ACCCON_C2R_DEF		7
#define   ACCCON_W2R			GENMASK(15, 12)
#define   ACCCON_W2R_DEF		7
#define   ACCCON_WH			GENMASK(11, 8)
#define   ACCCON_WH_DEF			15
#define   ACCCON_WST			GENMASK(7, 4)
#define   ACCCON_WST_DEF		15
#define   ACCCON_WST_MIN		3
#define   ACCCON_RLT			GENMASK(3, 0)
#define   ACCCON_RLT_DEF		15
#define   ACCCON_RLT_MIN		3

#define NFI_CMD				0x020

#define NFI_ADDRNOB			0x030
#define   ADDR_ROW_NOB			GENMASK(6, 4)
#define   ADDR_COL_NOB			GENMASK(2, 0)

#define NFI_COLADDR			0x034
#define NFI_ROWADDR			0x038

#define NFI_STRDATA			0x040
#define   STR_DATA			BIT(0)

#define NFI_CNRNB			0x044
#define   CB2R_TIME			GENMASK(7, 4)
#define   STR_CNRNB			BIT(0)

#define NFI_DATAW			0x050
#define NFI_DATAR			0x054

#define NFI_PIO_DIRDY			0x058
#define   PIO_DIRDY			BIT(0)

#define NFI_STA				0x060
#define   STA_NFI_FSM			GENMASK(19, 16)
#define     STA_FSM_CUSTOM_DATA		14
#define   STA_BUSY			BIT(8)
#define   STA_ADDR			BIT(1)
#define   STA_CMD			BIT(0)

#define NFI_ADDRCNTR			0x070
#define   SEC_CNTR			GENMASK(15, 12)
#define   SEC_ADDR			GENMASK(9, 0)

#define NFI_CSEL			0x090
#define   CSEL				GENMASK(1, 0)

#define NFI_FDM0L			0x0a0
#define NFI_FDML(n)			(0x0a0 + ((n) << 3))

#define NFI_FDM0M			0x0a4
#define NFI_FDMM(n)			(0x0a4 + ((n) << 3))

#define NFI_MASTER_STA			0x210
#define   MAS_ADDR			GENMASK(11, 9)
#define   MAS_RD			GENMASK(8, 6)
#define   MAS_WR			GENMASK(5, 3)
#define   MAS_RDDLY			GENMASK(2, 0)

/* ECC engine registers */
#define ECC_ENCCON			0x000
#define   ENC_EN			BIT(0)

#define ECC_ENCCNFG			0x004
#define   ENC_CNFG_MSG			GENMASK(28, 16)
#define   ENC_MODE			GENMASK(5, 4)
#define     ENC_MODE_NFI		1
#define   ENC_TNUM			GENMASK(2, 0)

#define ECC_ENCIDLE			0x00c
#define   ENC_IDLE			BIT(0)

#define ECC_DECCON			0x100
#define   DEC_EN			BIT(0)

#define ECC_DECCNFG			0x104
#define   DEC_EMPTY_EN			BIT(31)
#define   DEC_CS			GENMASK(28, 16)
#define   DEC_CON			GENMASK(13, 12)
#define     DEC_CON_EL			2
#define   DEC_MODE			GENMASK(5, 4)
#define     DEC_MODE_NFI		1
#define   DEC_TNUM			GENMASK(2, 0)

#define ECC_DECIDLE			0x10c
#define   DEC_IDLE			BIT(1)

#define ECC_DECENUM			0x114
#define   ERRNUM_S			2
#define   ERRNUM_M			GENMASK(3, 0)

#define ECC_DECDONE			0x118
#define   DEC_DONE7			BIT(7)
#define   DEC_DONE6			BIT(6)
#define   DEC_DONE5			BIT(5)
#define   DEC_DONE4			BIT(4)
#define   DEC_DONE3			BIT(3)
#define   DEC_DONE2			BIT(2)
#define   DEC_DONE1			BIT(1)
#define   DEC_DONE0			BIT(0)

#define ECC_DECEL(n)			(0x11c + (n) * 4)
#define   DEC_EL_ODD_S			16
#define   DEC_EL_M			0x1fff
#define   DEC_EL_BYTE_POS_S		3
#define   DEC_EL_BIT_POS_M		GENMASK(2, 0)

#define ECC_FDMADDR			0x13c

/* ENCIDLE and DECIDLE */
#define   ECC_IDLE			BIT(0)

#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
	(FIELD_PREP(ACCCON_POECS, tpoecs) | \
	 FIELD_PREP(ACCCON_PRECS, tprecs) | \
	 FIELD_PREP(ACCCON_C2R, tc2r) | \
	 FIELD_PREP(ACCCON_W2R, tw2r) | \
	 FIELD_PREP(ACCCON_WH, twh) | \
	 FIELD_PREP(ACCCON_WST, twst) | \
	 FIELD_PREP(ACCCON_RLT, trlt))

#define MASTER_STA_MASK			(MAS_ADDR | MAS_RD | MAS_WR | \
					 MAS_RDDLY)
#define NFI_RESET_TIMEOUT		1000000
#define NFI_CORE_TIMEOUT		500000
#define ECC_ENGINE_TIMEOUT		500000

#define ECC_SECTOR_SIZE			512
#define ECC_PARITY_BITS			13

#define NFI_FDM_SIZE			8

/* Register base */
#define NFI_BASE			0x1e003000
#define NFI_ECC_BASE			0x1e003800

static struct mt7621_nfc nfc_dev;

static const u16 mt7621_nfi_page_size[] = { SZ_512, SZ_2K, SZ_4K };
static const u8 mt7621_nfi_spare_size[] = { 16, 26, 27, 28 };
static const u8 mt7621_ecc_strength[] = { 4, 6, 8, 10, 12 };

static inline u32 nfi_read32(struct mt7621_nfc *nfc, u32 reg)
{
	return readl(nfc->nfi_regs + reg);
}

static inline void nfi_write32(struct mt7621_nfc *nfc, u32 reg, u32 val)
{
	writel(val, nfc->nfi_regs + reg);
}

static inline u16 nfi_read16(struct mt7621_nfc *nfc, u32 reg)
{
	return readw(nfc->nfi_regs + reg);
}

static inline void nfi_write16(struct mt7621_nfc *nfc, u32 reg, u16 val)
{
	writew(val, nfc->nfi_regs + reg);
}

static inline void ecc_write16(struct mt7621_nfc *nfc, u32 reg, u16 val)
{
	writew(val, nfc->ecc_regs + reg);
}

static inline u32 ecc_read32(struct mt7621_nfc *nfc, u32 reg)
{
	return readl(nfc->ecc_regs + reg);
}

static inline void ecc_write32(struct mt7621_nfc *nfc, u32 reg, u32 val)
{
	return writel(val, nfc->ecc_regs + reg);
}

static inline u8 *oob_fdm_ptr(struct nand_chip *nand, int sect)
{
	return nand->oob_poi + sect * NFI_FDM_SIZE;
}

static inline u8 *oob_ecc_ptr(struct mt7621_nfc *nfc, int sect)
{
	struct nand_chip *nand = &nfc->nand;

	return nand->oob_poi + nand->ecc.steps * NFI_FDM_SIZE +
		sect * (nfc->spare_per_sector - NFI_FDM_SIZE);
}

static inline u8 *page_data_ptr(struct nand_chip *nand, const u8 *buf,
				int sect)
{
	return (u8 *)buf + sect * nand->ecc.size;
}

static int mt7621_ecc_wait_idle(struct mt7621_nfc *nfc, u32 reg)
{
	u32 val;
	int ret;

	ret = readw_poll_timeout(nfc->ecc_regs + reg, val, val & ECC_IDLE,
				 ECC_ENGINE_TIMEOUT);
	if (ret) {
		pr_warn("ECC engine timed out entering idle mode\n");
		return -EIO;
	}

	return 0;
}

static int mt7621_ecc_decoder_wait_done(struct mt7621_nfc *nfc, u32 sect)
{
	u32 val;
	int ret;

	ret = readw_poll_timeout(nfc->ecc_regs + ECC_DECDONE, val,
				 val & (1 << sect), ECC_ENGINE_TIMEOUT);
	if (ret) {
		pr_warn("ECC decoder for sector %d timed out\n", sect);
		return -ETIMEDOUT;
	}

	return 0;
}

static void mt7621_ecc_encoder_op(struct mt7621_nfc *nfc, bool enable)
{
	mt7621_ecc_wait_idle(nfc, ECC_ENCIDLE);
	ecc_write16(nfc, ECC_ENCCON, enable ? ENC_EN : 0);
}

static void mt7621_ecc_decoder_op(struct mt7621_nfc *nfc, bool enable)
{
	mt7621_ecc_wait_idle(nfc, ECC_DECIDLE);
	ecc_write16(nfc, ECC_DECCON, enable ? DEC_EN : 0);
}

static int mt7621_ecc_correct_check(struct mt7621_nfc *nfc, u8 *sector_buf,
				    u8 *fdm_buf, u32 sect)
{
	struct nand_chip *nand = &nfc->nand;
	u32 decnum, num_error_bits, fdm_end_bits;
	u32 error_locations, error_bit_loc;
	u32 error_byte_pos, error_bit_pos;
	int bitflips = 0;
	u32 i;

	decnum = ecc_read32(nfc, ECC_DECENUM);
	num_error_bits = (decnum >> (sect << ERRNUM_S)) & ERRNUM_M;
	fdm_end_bits = (nand->ecc.size + NFI_FDM_SIZE) << 3;

	if (!num_error_bits)
		return 0;

	if (num_error_bits == ERRNUM_M)
		return -1;

	for (i = 0; i < num_error_bits; i++) {
		error_locations = ecc_read32(nfc, ECC_DECEL(i / 2));
		error_bit_loc = (error_locations >> ((i % 2) * DEC_EL_ODD_S)) &
				DEC_EL_M;
		error_byte_pos = error_bit_loc >> DEC_EL_BYTE_POS_S;
		error_bit_pos = error_bit_loc & DEC_EL_BIT_POS_M;

		if (error_bit_loc < (nand->ecc.size << 3)) {
			if (sector_buf) {
				sector_buf[error_byte_pos] ^=
					(1 << error_bit_pos);
			}
		} else if (error_bit_loc < fdm_end_bits) {
			if (fdm_buf) {
				fdm_buf[error_byte_pos - nand->ecc.size] ^=
					(1 << error_bit_pos);
			}
		}

		bitflips++;
	}

	return bitflips;
}

static int mt7621_nfc_wait_write_completion(struct mt7621_nfc *nfc,
					    struct nand_chip *nand)
{
	u16 val;
	int ret;

	ret = readw_poll_timeout(nfc->nfi_regs + NFI_ADDRCNTR, val,
				 FIELD_GET(SEC_CNTR, val) >= nand->ecc.steps,
				 NFI_CORE_TIMEOUT);

	if (ret) {
		pr_warn("NFI core write operation timed out\n");
		return -ETIMEDOUT;
	}

	return ret;
}

static void mt7621_nfc_hw_reset(struct mt7621_nfc *nfc)
{
	u32 val;
	int ret;

	/* reset all registers and force the NFI master to terminate */
	nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);

	/* wait for the master to finish the last transaction */
	ret = readw_poll_timeout(nfc->nfi_regs + NFI_MASTER_STA, val,
				 !(val & MASTER_STA_MASK), NFI_RESET_TIMEOUT);
	if (ret) {
		pr_warn("Failed to reset NFI master in %dms\n",
			NFI_RESET_TIMEOUT);
	}

	/* ensure any status register affected by the NFI master is reset */
	nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
	nfi_write16(nfc, NFI_STRDATA, 0);
}

static inline void mt7621_nfc_hw_init(struct mt7621_nfc *nfc)
{
	u32 acccon;

	/*
	 * CNRNB: nand ready/busy register
	 * -------------------------------
	 * 7:4: timeout register for polling the NAND busy/ready signal
	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
	 */
	nfi_write16(nfc, NFI_CNRNB, CB2R_TIME | STR_CNRNB);

	mt7621_nfc_hw_reset(nfc);

	/* Apply default access timing */
	acccon = ACCTIMING(ACCCON_POECS_DEF, ACCCON_PRECS_DEF, ACCCON_C2R_DEF,
			   ACCCON_W2R_DEF, ACCCON_WH_DEF, ACCCON_WST_DEF,
			   ACCCON_RLT_DEF);

	nfi_write32(nfc, NFI_ACCCON, acccon);
}

static int mt7621_nfc_send_command(struct mt7621_nfc *nfc, u8 command)
{
	u32 val;
	int ret;

	nfi_write32(nfc, NFI_CMD, command);

	ret = readl_poll_timeout(nfc->nfi_regs + NFI_STA, val, !(val & STA_CMD),
				 NFI_CORE_TIMEOUT);
	if (ret) {
		pr_warn("NFI core timed out entering command mode\n");
		return -EIO;
	}

	return 0;
}

static int mt7621_nfc_send_address_byte(struct mt7621_nfc *nfc, int addr)
{
	u32 val;
	int ret;

	nfi_write32(nfc, NFI_COLADDR, addr);
	nfi_write32(nfc, NFI_ROWADDR, 0);
	nfi_write16(nfc, NFI_ADDRNOB, 1);

	ret = readl_poll_timeout(nfc->nfi_regs + NFI_STA, val,
				 !(val & STA_ADDR), NFI_CORE_TIMEOUT);
	if (ret) {
		pr_warn("NFI core timed out entering address mode\n");
		return -EIO;
	}

	return 0;
}

static void mt7621_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
				unsigned int ctrl)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));

	if (ctrl & NAND_ALE) {
		mt7621_nfc_send_address_byte(nfc, dat & 0xff);
	} else if (ctrl & NAND_CLE) {
		mt7621_nfc_hw_reset(nfc);
		nfi_write16(nfc, NFI_CNFG,
			    FIELD_PREP(CNFG_OP_MODE, CNFG_OP_CUSTOM));
		mt7621_nfc_send_command(nfc, dat);
	}
}

static int mt7621_nfc_dev_ready(struct mtd_info *mtd)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));

	if (nfi_read32(nfc, NFI_STA) & STA_BUSY)
		return 0;

	return 1;
}

static void mt7621_nfc_select_chip(struct mtd_info *mtd, int chipnr)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));

	nfi_write16(nfc, NFI_CSEL, 0);
}

static void mt7621_nfc_wait_pio_ready(struct mt7621_nfc *nfc)
{
	int ret;
	u16 val;

	ret = readw_poll_timeout(nfc->nfi_regs + NFI_PIO_DIRDY, val,
				 val & PIO_DIRDY, NFI_CORE_TIMEOUT);
	if (ret < 0)
		pr_err("NFI core PIO mode not ready\n");
}

static u32 mt7621_nfc_pio_read(struct mt7621_nfc *nfc, bool br)
{
	u32 reg, fsm;

	/* after each byte read, the NFI_STA reg is reset by the hardware */
	reg = nfi_read32(nfc, NFI_STA);
	fsm = FIELD_GET(STA_NFI_FSM, reg);

	if (fsm != STA_FSM_CUSTOM_DATA) {
		reg = nfi_read16(nfc, NFI_CNFG);
		reg |= CNFG_READ_MODE | CNFG_BYTE_RW;
		if (!br)
			reg &= ~CNFG_BYTE_RW;
		nfi_write16(nfc, NFI_CNFG, reg);

		/*
		 * set to max sector to allow the HW to continue reading over
		 * unaligned accesses
		 */
		nfi_write16(nfc, NFI_CON, CON_NFI_SEC | CON_NFI_BRD);

		/* trigger to fetch data */
		nfi_write16(nfc, NFI_STRDATA, STR_DATA);
	}

	mt7621_nfc_wait_pio_ready(nfc);

	return nfi_read32(nfc, NFI_DATAR);
}

static void mt7621_nfc_read_data(struct mt7621_nfc *nfc, u8 *buf, u32 len)
{
	while (((uintptr_t)buf & 3) && len) {
		*buf = mt7621_nfc_pio_read(nfc, true);
		buf++;
		len--;
	}

	while (len >= 4) {
		*(u32 *)buf = mt7621_nfc_pio_read(nfc, false);
		buf += 4;
		len -= 4;
	}

	while (len) {
		*buf = mt7621_nfc_pio_read(nfc, true);
		buf++;
		len--;
	}
}

static void mt7621_nfc_read_data_discard(struct mt7621_nfc *nfc, u32 len)
{
	while (len >= 4) {
		mt7621_nfc_pio_read(nfc, false);
		len -= 4;
	}

	while (len) {
		mt7621_nfc_pio_read(nfc, true);
		len--;
	}
}

static void mt7621_nfc_pio_write(struct mt7621_nfc *nfc, u32 val, bool bw)
{
	u32 reg, fsm;

	reg = nfi_read32(nfc, NFI_STA);
	fsm = FIELD_GET(STA_NFI_FSM, reg);

	if (fsm != STA_FSM_CUSTOM_DATA) {
		reg = nfi_read16(nfc, NFI_CNFG);
		reg &= ~(CNFG_READ_MODE | CNFG_BYTE_RW);
		if (bw)
			reg |= CNFG_BYTE_RW;
		nfi_write16(nfc, NFI_CNFG, reg);

		nfi_write16(nfc, NFI_CON, CON_NFI_SEC | CON_NFI_BWR);
		nfi_write16(nfc, NFI_STRDATA, STR_DATA);
	}

	mt7621_nfc_wait_pio_ready(nfc);
	nfi_write32(nfc, NFI_DATAW, val);
}

static void mt7621_nfc_write_data(struct mt7621_nfc *nfc, const u8 *buf,
				  u32 len)
{
	while (((uintptr_t)buf & 3) && len) {
		mt7621_nfc_pio_write(nfc, *buf, true);
		buf++;
		len--;
	}

	while (len >= 4) {
		mt7621_nfc_pio_write(nfc, *(const u32 *)buf, false);
		buf += 4;
		len -= 4;
	}

	while (len) {
		mt7621_nfc_pio_write(nfc, *buf, true);
		buf++;
		len--;
	}
}

static void mt7621_nfc_write_data_empty(struct mt7621_nfc *nfc, u32 len)
{
	while (len >= 4) {
		mt7621_nfc_pio_write(nfc, 0xffffffff, false);
		len -= 4;
	}

	while (len) {
		mt7621_nfc_pio_write(nfc, 0xff, true);
		len--;
	}
}

static void mt7621_nfc_write_byte(struct mtd_info *mtd, u8 byte)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));

	mt7621_nfc_pio_write(nfc, byte, true);
}

static void mt7621_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));

	return mt7621_nfc_write_data(nfc, buf, len);
}

static u8 mt7621_nfc_read_byte(struct mtd_info *mtd)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));

	return mt7621_nfc_pio_read(nfc, true);
}

static void mt7621_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));

	mt7621_nfc_read_data(nfc, buf, len);
}

static int mt7621_nfc_calc_ecc_strength(struct mt7621_nfc *nfc,
					u32 avail_ecc_bytes)
{
	struct nand_chip *nand = &nfc->nand;
	struct mtd_info *mtd = nand_to_mtd(nand);
	u32 strength;
	int i;

	strength = avail_ecc_bytes * 8 / ECC_PARITY_BITS;

	/* Find the closest supported ecc strength */
	for (i = ARRAY_SIZE(mt7621_ecc_strength) - 1; i >= 0; i--) {
		if (mt7621_ecc_strength[i] <= strength)
			break;
	}

	if (unlikely(i < 0)) {
		pr_err("OOB size (%u) is not supported\n", mtd->oobsize);
		return -EINVAL;
	}

	nand->ecc.strength = mt7621_ecc_strength[i];
	nand->ecc.bytes = DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8);

	pr_debug("ECC strength adjusted to %u bits\n", nand->ecc.strength);

	return i;
}

static int mt7621_nfc_set_spare_per_sector(struct mt7621_nfc *nfc)
{
	struct nand_chip *nand = &nfc->nand;
	struct mtd_info *mtd = nand_to_mtd(nand);
	u32 size;
	int i;

	size = nand->ecc.bytes + NFI_FDM_SIZE;

	/* Find the closest supported spare size */
	for (i = 0; i < ARRAY_SIZE(mt7621_nfi_spare_size); i++) {
		if (mt7621_nfi_spare_size[i] >= size)
			break;
	}

	if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_spare_size))) {
		pr_err("OOB size (%u) is not supported\n", mtd->oobsize);
		return -EINVAL;
	}

	nfc->spare_per_sector = mt7621_nfi_spare_size[i];

	return i;
}

static int mt7621_nfc_ecc_init(struct mt7621_nfc *nfc)
{
	struct nand_chip *nand = &nfc->nand;
	struct mtd_info *mtd = nand_to_mtd(nand);
	u32 avail_ecc_bytes, encode_block_size, decode_block_size;
	u32 ecc_enccfg, ecc_deccfg;
	int ecc_cap;

	nand->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;

	nand->ecc.size = ECC_SECTOR_SIZE;
	nand->ecc.steps = mtd->writesize / nand->ecc.size;

	avail_ecc_bytes = mtd->oobsize / nand->ecc.steps - NFI_FDM_SIZE;

	ecc_cap = mt7621_nfc_calc_ecc_strength(nfc, avail_ecc_bytes);
	if (ecc_cap < 0)
		return ecc_cap;

	/* Sector + FDM */
	encode_block_size = (nand->ecc.size + NFI_FDM_SIZE) * 8;
	ecc_enccfg = ecc_cap | FIELD_PREP(ENC_MODE, ENC_MODE_NFI) |
		     FIELD_PREP(ENC_CNFG_MSG, encode_block_size);

	/* Sector + FDM + ECC parity bits */
	decode_block_size = ((nand->ecc.size + NFI_FDM_SIZE) * 8) +
			    nand->ecc.strength * ECC_PARITY_BITS;
	ecc_deccfg = ecc_cap | FIELD_PREP(DEC_MODE, DEC_MODE_NFI) |
		     FIELD_PREP(DEC_CS, decode_block_size) |
		     FIELD_PREP(DEC_CON, DEC_CON_EL) | DEC_EMPTY_EN;

	mt7621_ecc_encoder_op(nfc, false);
	ecc_write32(nfc, ECC_ENCCNFG, ecc_enccfg);

	mt7621_ecc_decoder_op(nfc, false);
	ecc_write32(nfc, ECC_DECCNFG, ecc_deccfg);

	return 0;
}

static int mt7621_nfc_set_page_format(struct mt7621_nfc *nfc)
{
	struct nand_chip *nand = &nfc->nand;
	struct mtd_info *mtd = nand_to_mtd(nand);
	int i, spare_size;
	u32 pagefmt;

	spare_size = mt7621_nfc_set_spare_per_sector(nfc);
	if (spare_size < 0)
		return spare_size;

	for (i = 0; i < ARRAY_SIZE(mt7621_nfi_page_size); i++) {
		if (mt7621_nfi_page_size[i] == mtd->writesize)
			break;
	}

	if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_page_size))) {
		pr_err("Page size (%u) is not supported\n", mtd->writesize);
		return -EINVAL;
	}

	pagefmt = FIELD_PREP(PAGEFMT_PAGE, i) |
		  FIELD_PREP(PAGEFMT_SPARE, spare_size) |
		  FIELD_PREP(PAGEFMT_FDM, NFI_FDM_SIZE) |
		  FIELD_PREP(PAGEFMT_FDM_ECC, NFI_FDM_SIZE);

	nfi_write16(nfc, NFI_PAGEFMT, pagefmt);

	return 0;
}

static int mt7621_nfc_attach_chip(struct nand_chip *nand)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(nand);
	int ret;

	if (nand->options & NAND_BUSWIDTH_16) {
		pr_err("16-bit buswidth is not supported");
		return -EINVAL;
	}

	ret = mt7621_nfc_ecc_init(nfc);
	if (ret)
		return ret;

	return mt7621_nfc_set_page_format(nfc);
}

static void mt7621_nfc_write_fdm(struct mt7621_nfc *nfc)
{
	struct nand_chip *nand = &nfc->nand;
	u32 vall, valm;
	u8 *oobptr;
	int i, j;

	for (i = 0; i < nand->ecc.steps; i++) {
		vall = 0;
		valm = 0;
		oobptr = oob_fdm_ptr(nand, i);

		for (j = 0; j < 4; j++)
			vall |= (u32)oobptr[j] << (j * 8);

		for (j = 0; j < 4; j++)
			valm |= (u32)oobptr[j + 4] << (j * 8);

		nfi_write32(nfc, NFI_FDML(i), vall);
		nfi_write32(nfc, NFI_FDMM(i), valm);
	}
}

static void mt7621_nfc_read_sector_fdm(struct mt7621_nfc *nfc, u32 sect)
{
	struct nand_chip *nand = &nfc->nand;
	u32 vall, valm;
	u8 *oobptr;
	int i;

	vall = nfi_read32(nfc, NFI_FDML(sect));
	valm = nfi_read32(nfc, NFI_FDMM(sect));
	oobptr = oob_fdm_ptr(nand, sect);

	for (i = 0; i < 4; i++)
		oobptr[i] = (vall >> (i * 8)) & 0xff;

	for (i = 0; i < 4; i++)
		oobptr[i + 4] = (valm >> (i * 8)) & 0xff;
}

static int mt7621_nfc_read_page_hwecc(struct mtd_info *mtd,
				      struct nand_chip *nand, uint8_t *buf,
				      int oob_required, int page)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(nand);
	int bitflips = 0, ret = 0;
	int rc, i;

	nand_read_page_op(nand, page, 0, NULL, 0);

	nfi_write16(nfc, NFI_CNFG, FIELD_PREP(CNFG_OP_MODE, CNFG_OP_CUSTOM) |
		    CNFG_READ_MODE | CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);

	mt7621_ecc_decoder_op(nfc, true);

	nfi_write16(nfc, NFI_CON, FIELD_PREP(CON_NFI_SEC, nand->ecc.steps) |
		    CON_NFI_BRD);

	for (i = 0; i < nand->ecc.steps; i++) {
		if (buf)
			mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i),
					     nand->ecc.size);
		else
			mt7621_nfc_read_data_discard(nfc, nand->ecc.size);

		rc = mt7621_ecc_decoder_wait_done(nfc, i);

		mt7621_nfc_read_sector_fdm(nfc, i);

		if (rc < 0) {
			ret = -EIO;
			continue;
		}

		rc = mt7621_ecc_correct_check(nfc,
			buf ? page_data_ptr(nand, buf, i) : NULL,
			oob_fdm_ptr(nand, i), i);

		if (rc < 0) {
			pr_warn("Uncorrectable ECC error at page %d step %d\n",
				page, i);
			bitflips = nand->ecc.strength + 1;
			mtd->ecc_stats.failed++;
		} else {
			if (rc > bitflips)
				bitflips = rc;
			mtd->ecc_stats.corrected += rc;
		}
	}

	mt7621_ecc_decoder_op(nfc, false);

	nfi_write16(nfc, NFI_CON, 0);

	if (ret < 0)
		return ret;

	return bitflips;
}

static int mt7621_nfc_read_page_raw(struct mtd_info *mtd,
				    struct nand_chip *nand, uint8_t *buf,
				    int oob_required, int page)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(nand);
	int i;

	nand_read_page_op(nand, page, 0, NULL, 0);

	nfi_write16(nfc, NFI_CNFG, FIELD_PREP(CNFG_OP_MODE, CNFG_OP_CUSTOM) |
		    CNFG_READ_MODE);

	nfi_write16(nfc, NFI_CON, FIELD_PREP(CON_NFI_SEC, nand->ecc.steps) |
		    CON_NFI_BRD);

	for (i = 0; i < nand->ecc.steps; i++) {
		/* Read data */
		if (buf)
			mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i),
					     nand->ecc.size);
		else
			mt7621_nfc_read_data_discard(nfc, nand->ecc.size);

		/* Read FDM */
		mt7621_nfc_read_data(nfc, oob_fdm_ptr(nand, i), NFI_FDM_SIZE);

		/* Read ECC parity data */
		mt7621_nfc_read_data(nfc, oob_ecc_ptr(nfc, i),
				     nfc->spare_per_sector - NFI_FDM_SIZE);
	}

	nfi_write16(nfc, NFI_CON, 0);

	return 0;
}

static int mt7621_nfc_read_oob_hwecc(struct mtd_info *mtd,
				     struct nand_chip *nand, int page)
{
	return mt7621_nfc_read_page_hwecc(mtd, nand, NULL, 1, page);
}

static int mt7621_nfc_read_oob_raw(struct mtd_info *mtd,
				   struct nand_chip *nand, int page)
{
	return mt7621_nfc_read_page_raw(mtd, nand, NULL, 1, page);
}

static int mt7621_nfc_check_empty_page(struct nand_chip *nand, const u8 *buf)
{
	struct mtd_info *mtd = nand_to_mtd(nand);
	u8 *oobptr;
	u32 i, j;

	if (buf) {
		for (i = 0; i < mtd->writesize; i++)
			if (buf[i] != 0xff)
				return 0;
	}

	for (i = 0; i < nand->ecc.steps; i++) {
		oobptr = oob_fdm_ptr(nand, i);
		for (j = 0; j < NFI_FDM_SIZE; j++)
			if (oobptr[j] != 0xff)
				return 0;
	}

	return 1;
}

static int mt7621_nfc_write_page_hwecc(struct mtd_info *mtd,
				       struct nand_chip *nand,
				       const u8 *buf, int oob_required,
				       int page)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(nand);

	if (mt7621_nfc_check_empty_page(nand, buf)) {
		/*
		 * MT7621 ECC engine always generates parity code for input
		 * pages, even for empty pages. Doing so will write back ECC
		 * parity code to the oob region, which means such pages will
		 * no longer be empty pages.
		 *
		 * To avoid this, stop write operation if current page is an
		 * empty page.
		 */
		return 0;
	}

	nand_prog_page_begin_op(nand, page, 0, NULL, 0);

	nfi_write16(nfc, NFI_CNFG, FIELD_PREP(CNFG_OP_MODE, CNFG_OP_CUSTOM) |
		    CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);

	mt7621_ecc_encoder_op(nfc, true);

	mt7621_nfc_write_fdm(nfc);

	nfi_write16(nfc, NFI_CON, FIELD_PREP(CON_NFI_SEC, nand->ecc.steps) |
		    CON_NFI_BWR);

	if (buf)
		mt7621_nfc_write_data(nfc, buf, mtd->writesize);
	else
		mt7621_nfc_write_data_empty(nfc, mtd->writesize);

	mt7621_nfc_wait_write_completion(nfc, nand);

	mt7621_ecc_encoder_op(nfc, false);

	nfi_write16(nfc, NFI_CON, 0);

	return nand_prog_page_end_op(nand);
}

static int mt7621_nfc_write_page_raw(struct mtd_info *mtd,
				     struct nand_chip *nand,
				     const u8 *buf, int oob_required,
				     int page)
{
	struct mt7621_nfc *nfc = nand_get_controller_data(nand);
	int i;

	nand_prog_page_begin_op(nand, page, 0, NULL, 0);

	nfi_write16(nfc, NFI_CNFG, FIELD_PREP(CNFG_OP_MODE, CNFG_OP_CUSTOM));

	nfi_write16(nfc, NFI_CON, FIELD_PREP(CON_NFI_SEC, nand->ecc.steps) |
		    CON_NFI_BWR);

	for (i = 0; i < nand->ecc.steps; i++) {
		/* Write data */
		if (buf)
			mt7621_nfc_write_data(nfc, page_data_ptr(nand, buf, i),
					      nand->ecc.size);
		else
			mt7621_nfc_write_data_empty(nfc, nand->ecc.size);

		/* Write FDM */
		mt7621_nfc_write_data(nfc, oob_fdm_ptr(nand, i),
				      NFI_FDM_SIZE);

		/* Write dummy ECC parity data */
		mt7621_nfc_write_data_empty(nfc, nfc->spare_per_sector -
					    NFI_FDM_SIZE);
	}

	mt7621_nfc_wait_write_completion(nfc, nand);

	nfi_write16(nfc, NFI_CON, 0);

	return nand_prog_page_end_op(nand);
}

static int mt7621_nfc_write_oob_hwecc(struct mtd_info *mtd,
				      struct nand_chip *nand, int page)
{
	return mt7621_nfc_write_page_hwecc(mtd, nand, NULL, 1, page);
}

static int mt7621_nfc_write_oob_raw(struct mtd_info *mtd,
				    struct nand_chip *nand, int page)
{
	return mt7621_nfc_write_page_raw(mtd, nand, NULL, 1, page);
}

static int mt7621_nfc_ooblayout_free(struct mtd_info *mtd, int section,
				     struct mtd_oob_region *oob_region)
{
	struct nand_chip *nand = mtd_to_nand(mtd);

	if (section >= nand->ecc.steps)
		return -ERANGE;

	oob_region->length = NFI_FDM_SIZE - 1;
	oob_region->offset = section * NFI_FDM_SIZE + 1;

	return 0;
}

static int mt7621_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
				    struct mtd_oob_region *oob_region)
{
	struct nand_chip *nand = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oob_region->offset = NFI_FDM_SIZE * nand->ecc.steps;
	oob_region->length = mtd->oobsize - oob_region->offset;

	return 0;
}

static const struct mtd_ooblayout_ops mt7621_nfc_ooblayout_ops = {
	.rfree = mt7621_nfc_ooblayout_free,
	.ecc = mt7621_nfc_ooblayout_ecc,
};

/*
 * This function will override the default one which is not supposed to be
 * used for ECC syndrome based pages.
 */
static int mt7621_nfc_block_bad(struct mtd_info *mtd, loff_t ofs)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct mtd_oob_ops ops;
	int ret, i = 0;
	u16 bad;

	memset(&ops, 0, sizeof(ops));
	ops.oobbuf = (uint8_t *)&bad;
	ops.ooboffs = nand->badblockpos;
	if (nand->options & NAND_BUSWIDTH_16) {
		ops.ooboffs &= ~0x01;
		ops.ooblen = 2;
	} else {
		ops.ooblen = 1;
	}
	ops.mode = MTD_OPS_RAW;

	/* Read from first/last page(s) if necessary */
	if (nand->bbt_options & NAND_BBT_SCANLASTPAGE)
		ofs += mtd->erasesize - mtd->writesize;

	do {
		ret = mtd_read_oob(mtd, ofs, &ops);
		if (ret)
			return ret;

		if (likely(nand->badblockbits == 8))
			ret = bad != 0xFF;
		else
			ret = hweight8(bad) < nand->badblockbits;

		i++;
		ofs += mtd->writesize;
	} while (!ret && (nand->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);

	return ret;
}

static void mt7621_nfc_init_chip(struct mt7621_nfc *nfc)
{
	struct nand_chip *nand = &nfc->nand;
	struct mtd_info *mtd;
	int ret;

	nand_set_controller_data(nand, nfc);

	nand->options |= NAND_NO_SUBPAGE_WRITE;

	nand->ecc.mode = NAND_ECC_HW_SYNDROME;
	nand->ecc.read_page = mt7621_nfc_read_page_hwecc;
	nand->ecc.read_page_raw = mt7621_nfc_read_page_raw;
	nand->ecc.write_page = mt7621_nfc_write_page_hwecc;
	nand->ecc.write_page_raw = mt7621_nfc_write_page_raw;
	nand->ecc.read_oob = mt7621_nfc_read_oob_hwecc;
	nand->ecc.read_oob_raw = mt7621_nfc_read_oob_raw;
	nand->ecc.write_oob = mt7621_nfc_write_oob_hwecc;
	nand->ecc.write_oob_raw = mt7621_nfc_write_oob_raw;

	nand->dev_ready = mt7621_nfc_dev_ready;
	nand->select_chip = mt7621_nfc_select_chip;
	nand->write_byte = mt7621_nfc_write_byte;
	nand->write_buf = mt7621_nfc_write_buf;
	nand->read_byte = mt7621_nfc_read_byte;
	nand->read_buf = mt7621_nfc_read_buf;
	nand->cmd_ctrl = mt7621_nfc_cmd_ctrl;
	nand->block_bad = mt7621_nfc_block_bad;

	mtd = nand_to_mtd(nand);
	mtd_set_ooblayout(mtd, &mt7621_nfc_ooblayout_ops);

	/* Reset NFI master */
	mt7621_nfc_hw_init(nfc);

	ret = nand_scan_ident(mtd, 1, NULL);
	if (ret)
		return;

	mt7621_nfc_attach_chip(nand);

	ret = nand_scan_tail(mtd);
	if (ret)
		return;

	nand_register(0, mtd);
}

static void mt7621_nfc_set_regs(struct mt7621_nfc *nfc)
{
	nfc->nfi_regs = (void __iomem *)CKSEG1ADDR(NFI_BASE);
	nfc->ecc_regs = (void __iomem *)CKSEG1ADDR(NFI_ECC_BASE);
}

void mt7621_nfc_spl_init(struct mt7621_nfc *nfc)
{
	struct nand_chip *nand = &nfc->nand;

	mt7621_nfc_set_regs(nfc);

	nand_set_controller_data(nand, nfc);

	nand->options |= NAND_NO_SUBPAGE_WRITE;

	nand->ecc.mode = NAND_ECC_HW_SYNDROME;
	nand->ecc.read_page = mt7621_nfc_read_page_hwecc;

	nand->dev_ready = mt7621_nfc_dev_ready;
	nand->select_chip = mt7621_nfc_select_chip;
	nand->read_byte = mt7621_nfc_read_byte;
	nand->read_buf = mt7621_nfc_read_buf;
	nand->cmd_ctrl = mt7621_nfc_cmd_ctrl;

	/* Reset NFI master */
	mt7621_nfc_hw_init(nfc);
}

int mt7621_nfc_spl_post_init(struct mt7621_nfc *nfc)
{
	struct nand_chip *nand = &nfc->nand;
	int nand_maf_id, nand_dev_id;
	int ret;

	ret = nand_detect(nand, &nand_maf_id, &nand_dev_id, NULL);

	if (ret)
		return ret;

	nand->numchips = 1;
	nand->mtd.size = nand->chipsize;

	return mt7621_nfc_attach_chip(nand);
}

void board_nand_init(void)
{
	mt7621_nfc_set_regs(&nfc_dev);
	mt7621_nfc_init_chip(&nfc_dev);
}