aboutsummaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/mxic_nand.c
blob: 6abdc24bd30c097c9588ef3300812164b699d9e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2021 Macronix International Co., Ltd.
 *
 * Author:
 *	Zhengxun Li <zhengxunli@mxic.com.tw>
 */

#include <common.h>
#include <clk.h>
#include <dm.h>
#include <malloc.h>
#include <nand.h>
#include <asm/io.h>
#include <asm/arch/hardware.h>
#include <dm/device_compat.h>
#include <linux/bug.h>
#include <linux/errno.h>
#include <linux/iopoll.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/delay.h>

#define HC_CFG			0x0
#define HC_CFG_IF_CFG(x)	((x) << 27)
#define HC_CFG_DUAL_SLAVE	BIT(31)
#define HC_CFG_INDIVIDUAL	BIT(30)
#define HC_CFG_NIO(x)		(((x) / 4) << 27)
#define HC_CFG_TYPE(s, t)	((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR	0
#define HC_CFG_TYPE_SPI_NAND	1
#define HC_CFG_TYPE_SPI_RAM	2
#define HC_CFG_TYPE_RAW_NAND	3
#define HC_CFG_SLV_ACT(x)	((x) << 21)
#define HC_CFG_CLK_PH_EN	BIT(20)
#define HC_CFG_CLK_POL_INV	BIT(19)
#define HC_CFG_BIG_ENDIAN	BIT(18)
#define HC_CFG_DATA_PASS	BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x)	((x) << 16)
#define HC_CFG_MAN_START_EN	BIT(3)
#define HC_CFG_MAN_START	BIT(2)
#define HC_CFG_MAN_CS_EN	BIT(1)
#define HC_CFG_MAN_CS_ASSERT	BIT(0)

#define INT_STS			0x4
#define INT_STS_EN		0x8
#define INT_SIG_EN		0xc
#define INT_STS_ALL		GENMASK(31, 0)
#define INT_RDY_PIN		BIT(26)
#define INT_RDY_SR		BIT(25)
#define INT_LNR_SUSP		BIT(24)
#define INT_ECC_ERR		BIT(17)
#define INT_CRC_ERR		BIT(16)
#define INT_LWR_DIS		BIT(12)
#define INT_LRD_DIS		BIT(11)
#define INT_SDMA_INT		BIT(10)
#define INT_DMA_FINISH		BIT(9)
#define INT_RX_NOT_FULL		BIT(3)
#define INT_RX_NOT_EMPTY	BIT(2)
#define INT_TX_NOT_FULL		BIT(1)
#define INT_TX_EMPTY		BIT(0)

#define HC_EN			0x10
#define HC_EN_BIT		BIT(0)

#define TXD(x)			(0x14 + ((x) * 4))
#define RXD			0x24

#define SS_CTRL(s)		(0x30 + ((s) * 4))
#define LRD_CFG			0x44
#define LWR_CFG			0x80
#define RWW_CFG			0x70
#define OP_READ			BIT(23)
#define OP_DUMMY_CYC(x)		((x) << 17)
#define OP_ADDR_BYTES(x)	((x) << 14)
#define OP_CMD_BYTES(x)		(((x) - 1) << 13)
#define OP_OCTA_CRC_EN		BIT(12)
#define OP_DQS_EN		BIT(11)
#define OP_ENHC_EN		BIT(10)
#define OP_PREAMBLE_EN		BIT(9)
#define OP_DATA_DDR		BIT(8)
#define OP_DATA_BUSW(x)		((x) << 6)
#define OP_ADDR_DDR		BIT(5)
#define OP_ADDR_BUSW(x)		((x) << 3)
#define OP_CMD_DDR		BIT(2)
#define OP_CMD_BUSW(x)		(x)
#define OP_BUSW_1		0
#define OP_BUSW_2		1
#define OP_BUSW_4		2
#define OP_BUSW_8		3

#define OCTA_CRC		0x38
#define OCTA_CRC_IN_EN(s)	BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x)	((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s)	BIT(0 + ((s) * 16))

#define ONFI_DIN_CNT(s)		(0x3c + (s))

#define LRD_CTRL		0x48
#define RWW_CTRL		0x74
#define LWR_CTRL		0x84
#define LMODE_EN		BIT(31)
#define LMODE_SLV_ACT(x)	((x) << 21)
#define LMODE_CMD1(x)		((x) << 8)
#define LMODE_CMD0(x)		(x)

#define LRD_ADDR		0x4c
#define LWR_ADDR		0x88
#define LRD_RANGE		0x50
#define LWR_RANGE		0x8c

#define AXI_SLV_ADDR		0x54

#define DMAC_RD_CFG		0x58
#define DMAC_WR_CFG		0x94
#define DMAC_CFG_PERIPH_EN	BIT(31)
#define DMAC_CFG_ALLFLUSH_EN	BIT(30)
#define DMAC_CFG_LASTFLUSH_EN	BIT(29)
#define DMAC_CFG_QE(x)		(((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x)	(((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x)	((x) << 8)
#define DMAC_CFG_DIR_READ	BIT(1)
#define DMAC_CFG_START		BIT(0)

#define DMAC_RD_CNT		0x5c
#define DMAC_WR_CNT		0x98

#define SDMA_ADDR		0x60

#define DMAM_CFG		0x64
#define DMAM_CFG_START		BIT(31)
#define DMAM_CFG_CONT		BIT(30)
#define DMAM_CFG_SDMA_GAP(x)	(fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ	BIT(1)
#define DMAM_CFG_EN		BIT(0)

#define DMAM_CNT		0x68

#define LNR_TIMER_TH		0x6c

#define RDM_CFG0		0x78
#define RDM_CFG0_POLY(x)	(x)

#define RDM_CFG1		0x7c
#define RDM_CFG1_RDM_EN		BIT(31)
#define RDM_CFG1_SEED(x)	(x)

#define LWR_SUSP_CTRL		0x90
#define LWR_SUSP_CTRL_EN	BIT(31)

#define DMAS_CTRL		0x9c
#define DMAS_CTRL_EN		BIT(31)
#define DMAS_CTRL_DIR_READ	BIT(30)

#define DATA_STROB		0xa0
#define DATA_STROB_EDO_EN	BIT(2)
#define DATA_STROB_INV_POL	BIT(1)
#define DATA_STROB_DELAY_2CYC	BIT(0)

#define IDLY_CODE(x)		(0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v)	((v) << (((x) % 4) * 8))

#define GPIO			0xc4
#define GPIO_PT(x)		BIT(3 + ((x) * 16))
#define GPIO_RESET(x)		BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x)		BIT(1 + ((x) * 16))
#define GPIO_WPB(x)		BIT((x) * 16)

#define HC_VER			0xd0

#define HW_TEST(x)		(0xe0 + ((x) * 4))

#define MXIC_NFC_MAX_CLK_HZ	50000000
#define IRQ_TIMEOUT		1000

struct mxic_nand_ctrl {
	struct clk *send_clk;
	struct clk *send_dly_clk;
	void __iomem *regs;
	struct nand_chip nand_chip;
};

/*
 * struct mxic_nfc_command_format - Defines NAND flash command format
 * @start_cmd:		First cycle command (Start command)
 * @end_cmd:		Second cycle command (Last command)
 * @addr_len:		Number of address cycles required to send the address
 * @read:		Direction of command
 */

struct mxic_nfc_command_format {
	int start_cmd;
	int end_cmd;
	u8 addr_len;
	bool read;
};

/*  The NAND flash operations command format */
static const struct mxic_nfc_command_format mxic_nand_commands[] = {
	{NAND_CMD_READ0,	NAND_CMD_READSTART, 5, 1 },
	{NAND_CMD_RNDOUT,	NAND_CMD_RNDOUTSTART, 2, 1 },
	{NAND_CMD_READID,	NAND_CMD_NONE, 1, 1 },
	{NAND_CMD_STATUS,	NAND_CMD_NONE, 0, 1 },
	{NAND_CMD_SEQIN,	NAND_CMD_NONE, 5, 0 },
	{NAND_CMD_PAGEPROG,	NAND_CMD_NONE, 0, 0 },
	{NAND_CMD_CACHEDPROG,	NAND_CMD_NONE, 0, 0 },
	{NAND_CMD_RNDIN,	NAND_CMD_NONE, 2, 0 },
	{NAND_CMD_ERASE1,	NAND_CMD_NONE, 3, 0 },
	{NAND_CMD_ERASE2,	NAND_CMD_NONE, 0, 0 },
	{NAND_CMD_RESET,	NAND_CMD_NONE, 0, 0 },
	{NAND_CMD_PARAM,	NAND_CMD_NONE, 1, 1 },
	{NAND_CMD_GET_FEATURES,	NAND_CMD_NONE, 1, 1 },
	{NAND_CMD_SET_FEATURES,	NAND_CMD_NONE, 1, 0 },
	{NAND_CMD_NONE,		NAND_CMD_NONE, 0, 0 },
};

static int mxic_nfc_clk_enable(struct mxic_nand_ctrl *nfc)
{
	int ret;

	ret = clk_prepare_enable(nfc->send_clk);
	if (ret)
		return ret;

	ret = clk_prepare_enable(nfc->send_dly_clk);
	if (ret)
		goto err_send_dly_clk;

	return ret;

err_send_dly_clk:
	clk_disable_unprepare(nfc->send_clk);

	return ret;
}

static void mxic_nfc_clk_disable(struct mxic_nand_ctrl *nfc)
{
	clk_disable_unprepare(nfc->send_clk);
	clk_disable_unprepare(nfc->send_dly_clk);
}

static void mxic_nfc_set_input_delay(struct mxic_nand_ctrl *nfc, u8 idly_code)
{
	writel(IDLY_CODE_VAL(0, idly_code) |
	       IDLY_CODE_VAL(1, idly_code) |
	       IDLY_CODE_VAL(2, idly_code) |
	       IDLY_CODE_VAL(3, idly_code),
	       nfc->regs + IDLY_CODE(0));
	writel(IDLY_CODE_VAL(4, idly_code) |
	       IDLY_CODE_VAL(5, idly_code) |
	       IDLY_CODE_VAL(6, idly_code) |
	       IDLY_CODE_VAL(7, idly_code),
	       nfc->regs + IDLY_CODE(1));
}

static int mxic_nfc_clk_setup(struct mxic_nand_ctrl *nfc, unsigned long freq)
{
	int ret;

	ret = clk_set_rate(nfc->send_clk, freq);
	if (ret)
		return ret;

	ret = clk_set_rate(nfc->send_dly_clk, freq);
	if (ret)
		return ret;

	/*
	 * A constant delay range from 0x0 ~ 0x1F for input delay,
	 * the unit is 78 ps, the max input delay is 2.418 ns.
	 */
	mxic_nfc_set_input_delay(nfc, 0xf);

	return 0;
}

static int mxic_nfc_set_freq(struct mxic_nand_ctrl *nfc, unsigned long freq)
{
	int ret;

	if (freq > MXIC_NFC_MAX_CLK_HZ)
		freq = MXIC_NFC_MAX_CLK_HZ;

	mxic_nfc_clk_disable(nfc);
	ret = mxic_nfc_clk_setup(nfc, freq);
	if (ret)
		return ret;

	ret = mxic_nfc_clk_enable(nfc);
	if (ret)
		return ret;

	return 0;
}

static void mxic_nfc_hw_init(struct mxic_nand_ctrl *nfc)
{
	writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
	       HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
	       HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
	writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
	writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
	writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
	writel(0, nfc->regs + LRD_CFG);
	writel(0, nfc->regs + LRD_CTRL);
	writel(0x0, nfc->regs + HC_EN);
}

static void mxic_nfc_cs_enable(struct mxic_nand_ctrl *nfc)
{
	writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
	       nfc->regs + HC_CFG);
	writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
	       nfc->regs + HC_CFG);
}

static void mxic_nfc_cs_disable(struct mxic_nand_ctrl *nfc)
{
	writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
	       nfc->regs + HC_CFG);
}

static int mxic_nfc_data_xfer(struct mxic_nand_ctrl *nfc, const void *txbuf,
			      void *rxbuf, unsigned int len)
{
	unsigned int pos = 0;

	while (pos < len) {
		unsigned int nbytes = len - pos;
		u32 data = 0xffffffff;
		u32 sts;
		int ret;

		if (nbytes > 4)
			nbytes = 4;

		if (txbuf)
			memcpy(&data, txbuf + pos, nbytes);

		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
					 sts & INT_TX_EMPTY, 1000000);
		if (ret)
			return ret;

		writel(data, nfc->regs + TXD(nbytes % 4));

		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
					 sts & INT_TX_EMPTY, 1000000);
		if (ret)
			return ret;

		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
					 sts & INT_RX_NOT_EMPTY, 1000000);
		if (ret)
			return ret;

		data = readl(nfc->regs + RXD);
		if (rxbuf) {
			data >>= (8 * (4 - nbytes));
			memcpy(rxbuf + pos, &data, nbytes);
		}

		WARN_ON(readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY);

		pos += nbytes;
	}

	return 0;
}

static uint8_t mxic_nfc_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
	u8 data;

	writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
	writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
	       OP_READ, nfc->regs + SS_CTRL(0));

	mxic_nfc_data_xfer(nfc, NULL, &data, 1);

	return data;
}

static void mxic_nfc_read_buf(struct mtd_info *mtd, uint8_t *rxbuf, int rlen)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);

	writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
	writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
			    OP_READ, nfc->regs + SS_CTRL(0));

	mxic_nfc_data_xfer(nfc, NULL, rxbuf, rlen);
}

static void mxic_nfc_write_buf(struct mtd_info *mtd, const uint8_t *txbuf,
			       int wlen)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);

	writel(wlen, nfc->regs + ONFI_DIN_CNT(0));
	writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
	       nfc->regs + SS_CTRL(0));

	mxic_nfc_data_xfer(nfc, txbuf, NULL, wlen);
}

static void mxic_nfc_cmd_function(struct mtd_info *mtd, unsigned int command,
				  int column, int page_addr)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
	const struct mxic_nfc_command_format *cmd = NULL;
	u32 sts;
	u8 index, addr[5];

	/* Emulate NAND_CMD_READOOB */
	if (command == NAND_CMD_READOOB) {
		column += mtd->writesize;
		command = NAND_CMD_READ0;
	}

	/* Get the command format */
	for (index = 0; index < ARRAY_SIZE(mxic_nand_commands); index++)
		if (command == mxic_nand_commands[index].start_cmd)
			break;

	cmd = &mxic_nand_commands[index];

	if (!(command == NAND_CMD_PAGEPROG ||
	      command == NAND_CMD_CACHEDPROG ||
	      command == NAND_CMD_ERASE2))
		mxic_nfc_cs_disable(nfc);

	mxic_nfc_cs_enable(nfc);

	if (column != -1) {
		addr[0] = column;
		addr[1] = column >> 8;

		if (page_addr != -1) {
			addr[2] = page_addr;
			addr[3] = page_addr >> 8;
			addr[4] = page_addr >> 16;
		}
	} else if (page_addr != -1) {
		addr[0] = page_addr;
		addr[1] = page_addr >> 8;
		addr[2] = page_addr >> 16;
	}

	writel(0, nfc->regs + HC_EN);
	writel(HC_EN_BIT, nfc->regs + HC_EN);
	writel(OP_CMD_BUSW(OP_BUSW_8) |  OP_DUMMY_CYC(0x3F) | OP_CMD_BYTES(0),
	       nfc->regs + SS_CTRL(0));

	mxic_nfc_data_xfer(nfc, &cmd->start_cmd, NULL, 1);

	if (cmd->addr_len) {
		writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
		       OP_ADDR_BYTES(cmd->addr_len), nfc->regs + SS_CTRL(0));

		mxic_nfc_data_xfer(nfc, &addr, NULL, cmd->addr_len);
	}

	if (cmd->end_cmd != NAND_CMD_NONE) {
		writel(0, nfc->regs + HC_EN);
		writel(HC_EN_BIT, nfc->regs + HC_EN);
		writel(OP_CMD_BUSW(OP_BUSW_8) |  OP_DUMMY_CYC(0x3F) |
		       OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));

		mxic_nfc_data_xfer(nfc, &cmd->end_cmd, NULL, 1);
	}

	readl_poll_timeout(nfc->regs + INT_STS, sts, sts & INT_RDY_PIN,
			   1000000);

	if (command == NAND_CMD_PAGEPROG ||
	    command == NAND_CMD_CACHEDPROG ||
	    command == NAND_CMD_ERASE2 ||
	    command == NAND_CMD_RESET) {
		mxic_nfc_cs_disable(nfc);
	}
}

static int mxic_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
					 const struct nand_data_interface *conf)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
	const struct nand_sdr_timings *sdr;
	unsigned long freq;
	int ret;

	sdr = nand_get_sdr_timings(conf);
	if (IS_ERR(sdr))
		return PTR_ERR(sdr);

	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	freq = 1000000000 / (sdr->tRC_min / 1000);

	ret =  mxic_nfc_set_freq(nfc, freq);
	if (ret)
		WARN_ON("Set freq failed\n");

	if (sdr->tRC_min < 30000)
		writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);

	return 0;
}

/* Dummy implementation: we don't support multiple chips */
static void mxic_nfc_select_chip(struct mtd_info *mtd, int chipnr)
{
	switch (chipnr) {
	case -1:
	case 0:
		break;

	default:
		BUG();
	}
}

static int mxic_nfc_probe(struct udevice *dev)
{
	struct mxic_nand_ctrl *nfc = dev_get_priv(dev);
	struct nand_chip *nand_chip = &nfc->nand_chip;
	struct mtd_info *mtd;
	ofnode child;
	int err;

	nfc->regs = dev_read_addr_ptr(dev);

	nfc->send_clk = devm_clk_get(dev, "send");
	if (IS_ERR(nfc->send_clk))
		return PTR_ERR(nfc->send_clk);

	nfc->send_dly_clk = devm_clk_get(dev, "send_dly");
	if (IS_ERR(nfc->send_dly_clk))
		return PTR_ERR(nfc->send_dly_clk);

	mtd = nand_to_mtd(nand_chip);

	ofnode_for_each_subnode(child, dev_ofnode(dev))
		nand_set_flash_node(nand_chip, child);

	nand_set_controller_data(nand_chip, nfc);

	nand_chip->select_chip = mxic_nfc_select_chip;
	nand_chip->setup_data_interface = mxic_nfc_setup_data_interface;
	nand_chip->cmdfunc = mxic_nfc_cmd_function;
	nand_chip->read_byte = mxic_nfc_read_byte;
	nand_chip->read_buf = mxic_nfc_read_buf;
	nand_chip->write_buf = mxic_nfc_write_buf;

	mxic_nfc_hw_init(nfc);

	err = nand_scan(mtd, 1);
	if (err)
		return err;

	err = nand_register(0, mtd);
	if (err) {
		dev_err(dev, "Failed to register MTD: %d\n", err);
		return err;
	}

	return 0;
}

static const struct udevice_id mxic_nfc_of_ids[] = {
	{ .compatible = "mxic,multi-itfc-v009-nand-controller" },
	{ /* Sentinel */ }
};

U_BOOT_DRIVER(mxic_nfc) = {
	.name = "mxic_nfc",
	.id = UCLASS_MTD,
	.of_match = mxic_nfc_of_ids,
	.probe = mxic_nfc_probe,
	.priv_auto = sizeof(struct mxic_nand_ctrl),
};

void board_nand_init(void)
{
	struct udevice *dev;
	int ret;

	ret = uclass_get_device_by_driver(UCLASS_MTD,
					  DM_DRIVER_GET(mxic_nfc), &dev);
	if (ret && ret != -ENODEV)
		pr_err("Failed to initialize %s. (error %d)\n", dev->name,
		       ret);
}