1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020 Cortina Access Inc.
* Author: Aaron Tseng <aaron.tseng@cortina-access.com>
*
* Ethernet MAC Driver for all supported CAxxxx SoCs
*/
#include <common.h>
#include <command.h>
#include <malloc.h>
#include <net.h>
#include <miiphy.h>
#include <env.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <u-boot/crc.h>
#include <led.h>
#include "cortina_ni.h"
#define HEADER_A_SIZE 8
enum ca_led_state_t {
CA_LED_OFF = 0,
CA_LED_ON = 1,
};
enum ca_port_t {
NI_PORT_0 = 0,
NI_PORT_1,
NI_PORT_2,
NI_PORT_3,
NI_PORT_4,
NI_PORT_5,
NI_PORT_MAX,
};
static struct udevice *curr_dev;
static u32 *ca_rdwrptr_adv_one(u32 *x, unsigned long base, unsigned long max)
{
if (x + 1 >= (u32 *)max)
return (u32 *)base;
else
return (x + 1);
}
static void ca_reg_read(void *reg, u64 base, u64 offset)
{
u32 *val = (u32 *)reg;
*val = readl(KSEG1_ATU_XLAT(base + offset));
}
static void ca_reg_write(void *reg, u64 base, u64 offset)
{
u32 val = *(u32 *)reg;
writel(val, KSEG1_ATU_XLAT(base + offset));
}
static int ca_mdio_write_rgmii(u32 addr, u32 offset, u16 data)
{
/* up to 10000 cycles*/
u32 loop_wait = __MDIO_ACCESS_TIMEOUT;
struct PER_MDIO_ADDR_t mdio_addr;
struct PER_MDIO_CTRL_t mdio_ctrl;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
memset(&mdio_addr, 0, sizeof(mdio_addr));
mdio_addr.mdio_addr = addr;
mdio_addr.mdio_offset = offset;
mdio_addr.mdio_rd_wr = __MDIO_WR_FLAG;
ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr,
PER_MDIO_ADDR_OFFSET);
ca_reg_write(&data, (u64)priv->per_mdio_base_addr,
PER_MDIO_WRDATA_OFFSET);
memset(&mdio_ctrl, 0, sizeof(mdio_ctrl));
mdio_ctrl.mdiostart = 1;
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
debug("%s: phy_addr=%d, offset=%d, data=0x%x\n",
__func__, addr, offset, data);
do {
ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
if (mdio_ctrl.mdiodone) {
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
return 0;
}
} while (--loop_wait);
printf("CA NI %s: PHY write timeout!!!\n", __func__);
return -ETIMEDOUT;
}
int ca_mdio_write(u32 addr, u32 offset, u16 data)
{
u32 reg_addr, reg_val;
struct NI_MDIO_OPER_T mdio_oper;
/* support range: 1~31*/
if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX)
return -EINVAL;
/* the phy addr 5 is connect to RGMII */
if (addr >= 5)
return ca_mdio_write_rgmii(addr, offset, data);
memset(&mdio_oper, 0, sizeof(mdio_oper));
mdio_oper.reg_off = offset;
mdio_oper.phy_addr = addr;
mdio_oper.reg_base = CA_NI_MDIO_REG_BASE;
reg_val = data;
memcpy(®_addr, &mdio_oper, sizeof(reg_addr));
ca_reg_write(®_val, (u64)reg_addr, 0);
return 0;
}
static int ca_mdio_read_rgmii(u32 addr, u32 offset, u16 *data)
{
u32 loop_wait = __MDIO_ACCESS_TIMEOUT;
struct PER_MDIO_ADDR_t mdio_addr;
struct PER_MDIO_CTRL_t mdio_ctrl;
struct PER_MDIO_RDDATA_t read_data;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
memset(&mdio_addr, 0, sizeof(mdio_addr));
mdio_addr.mdio_addr = addr;
mdio_addr.mdio_offset = offset;
mdio_addr.mdio_rd_wr = __MDIO_RD_FLAG;
ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr,
PER_MDIO_ADDR_OFFSET);
memset(&mdio_ctrl, 0, sizeof(mdio_ctrl));
mdio_ctrl.mdiostart = 1;
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
do {
ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
if (mdio_ctrl.mdiodone) {
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
ca_reg_read(&read_data, (u64)priv->per_mdio_base_addr,
PER_MDIO_RDDATA_OFFSET);
*data = read_data.mdio_rddata;
return 0;
}
} while (--loop_wait);
printf("CA NI %s: TIMEOUT!!\n", __func__);
return -ETIMEDOUT;
}
int ca_mdio_read(u32 addr, u32 offset, u16 *data)
{
u32 reg_addr, reg_val;
struct NI_MDIO_OPER_T mdio_oper;
if (!data)
return -EINVAL;
/* support range: 1~31*/
if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX)
return -EINVAL;
/* the phy addr 5 is connect to RGMII */
if (addr >= 5)
return ca_mdio_read_rgmii(addr, offset, data);
memset(&mdio_oper, 0, sizeof(mdio_oper));
mdio_oper.reg_off = offset;
mdio_oper.phy_addr = addr;
mdio_oper.reg_base = CA_NI_MDIO_REG_BASE;
reg_val = *data;
memcpy(®_addr, &mdio_oper, sizeof(reg_addr));
ca_reg_read(®_val, (u64)reg_addr, 0);
*data = reg_val;
return 0;
}
int ca_miiphy_read(const char *devname, u8 addr, u8 reg, u16 *value)
{
return ca_mdio_read(addr, reg, value);
}
int ca_miiphy_write(const char *devname, u8 addr, u8 reg, u16 value)
{
return ca_mdio_write(addr, reg, value);
}
static int cortina_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
u16 data;
ca_mdio_read(addr, reg, &data);
return data;
}
static int cortina_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
return ca_mdio_write(addr, reg, val);
}
static void ca_ni_setup_mac_addr(void)
{
u8 mac[6];
struct NI_HV_GLB_MAC_ADDR_CFG0_t mac_addr_cfg0;
struct NI_HV_GLB_MAC_ADDR_CFG1_t mac_addr_cfg1;
struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg;
struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
/* parsing ethaddr and set to NI registers. */
if (eth_env_get_enetaddr("ethaddr", mac)) {
/* The complete MAC address consists of
* {MAC_ADDR0_mac_addr0[0-3], MAC_ADDR1_mac_addr1[4],
* PT_PORT_STATIC_CFG_mac_addr6[5]}.
*/
mac_addr_cfg0.mac_addr0 = (mac[0] << 24) + (mac[1] << 16) +
(mac[2] << 8) + mac[3];
ca_reg_write(&mac_addr_cfg0, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_MAC_ADDR_CFG0_OFFSET);
memset(&mac_addr_cfg1, 0, sizeof(mac_addr_cfg1));
mac_addr_cfg1.mac_addr1 = mac[4];
ca_reg_write(&mac_addr_cfg1, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_MAC_ADDR_CFG1_OFFSET);
ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
port_static_cfg.mac_addr6 = mac[5];
ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
/* received only Broadcast and Address matched packets */
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.xram_mgmt_promisc_mode = 0;
cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
} else {
/* received all packets(promiscuous mode) */
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.xram_mgmt_promisc_mode = 3;
cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
}
}
static void ca_ni_enable_tx_rx(void)
{
struct NI_HV_PT_RXMAC_CFG_t rxmac_cfg;
struct NI_HV_PT_TXMAC_CFG_t txmac_cfg;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
/* Enable TX and RX functions */
ca_reg_read(&rxmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_RXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
rxmac_cfg.rx_en = 1;
ca_reg_write(&rxmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_RXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
ca_reg_read(&txmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_TXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
txmac_cfg.tx_en = 1;
ca_reg_write(&txmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_TXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
}
#define AUTO_SCAN_TIMEOUT 3000 /* 3 seconds */
static int ca_ni_auto_scan_active_port(struct cortina_ni_priv *priv)
{
u8 i;
u16 data;
u32 start_time;
start_time = get_timer(0);
while (get_timer(start_time) < AUTO_SCAN_TIMEOUT) {
for (i = 0; i < priv->valid_port_num; i++) {
if (!priv->port_map[i].phy_addr)
continue;
ca_mdio_read(priv->port_map[i].phy_addr, 1, &data);
if (data & 0x04) {
priv->active_port = priv->port_map[i].port;
return 0;
}
}
}
printf("CA NI %s: auto scan active_port timeout.\n", __func__);
return -1;
}
static void ca_ni_led(int port, int status)
{
char label[10];
struct udevice *led_dev;
if (IS_ENABLED(CONFIG_LED_CORTINA)) {
snprintf(label, sizeof(label), "led%d", port);
debug("%s: set port %d led %s.\n",
__func__, port, status ? "on" : "off");
led_get_by_label(label, &led_dev);
led_set_state(led_dev, status);
}
}
static void ca_ni_reset(void)
{
int i;
struct NI_HV_GLB_INIT_DONE_t init_done;
struct NI_HV_GLB_INTF_RST_CONFIG_t intf_rst_config;
struct NI_HV_GLB_STATIC_CFG_t static_cfg;
struct GLOBAL_BLOCK_RESET_t glb_blk_reset;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
/* NI global resets */
ca_reg_read(&glb_blk_reset, (u64)priv->glb_base_addr,
GLOBAL_BLOCK_RESET_OFFSET);
glb_blk_reset.reset_ni = 1;
ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr,
GLOBAL_BLOCK_RESET_OFFSET);
/* Remove resets */
glb_blk_reset.reset_ni = 0;
ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr,
GLOBAL_BLOCK_RESET_OFFSET);
/* check the ready bit of NI module */
for (i = 0; i < NI_READ_POLL_COUNT; i++) {
ca_reg_read(&init_done, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_INIT_DONE_OFFSET);
if (init_done.ni_init_done)
break;
}
if (i == NI_READ_POLL_COUNT) {
printf("CA NI %s: NI init done not ready, init_done=0x%x!!!\n",
__func__, init_done.ni_init_done);
}
ca_reg_read(&intf_rst_config, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_INTF_RST_CONFIG_OFFSET);
switch (priv->active_port) {
case NI_PORT_0:
intf_rst_config.intf_rst_p0 = 0;
intf_rst_config.mac_rx_rst_p0 = 0;
intf_rst_config.mac_tx_rst_p0 = 0;
break;
case NI_PORT_1:
intf_rst_config.intf_rst_p1 = 0;
intf_rst_config.mac_rx_rst_p1 = 0;
intf_rst_config.mac_tx_rst_p1 = 0;
break;
case NI_PORT_2:
intf_rst_config.intf_rst_p2 = 0;
intf_rst_config.mac_rx_rst_p2 = 0;
intf_rst_config.mac_tx_rst_p2 = 0;
break;
case NI_PORT_3:
intf_rst_config.intf_rst_p3 = 0;
intf_rst_config.mac_tx_rst_p3 = 0;
intf_rst_config.mac_rx_rst_p3 = 0;
break;
case NI_PORT_4:
intf_rst_config.intf_rst_p4 = 0;
intf_rst_config.mac_tx_rst_p4 = 0;
intf_rst_config.mac_rx_rst_p4 = 0;
break;
}
ca_reg_write(&intf_rst_config, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_INTF_RST_CONFIG_OFFSET);
/* Only one GMAC can connect to CPU */
ca_reg_read(&static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_STATIC_CFG_OFFSET);
static_cfg.port_to_cpu = priv->active_port;
static_cfg.txmib_mode = 1;
static_cfg.rxmib_mode = 1;
ca_reg_write(&static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_STATIC_CFG_OFFSET);
}
static void ca_internal_gphy_cal(struct cortina_ni_priv *priv)
{
int i, port, num;
u32 reg_off, value;
num = priv->gphy_num;
for (port = 0; port < 4; port++) {
for (i = 0; i < num; i++) {
reg_off = priv->gphy_values[i].reg_off + (port * 0x80);
value = priv->gphy_values[i].value;
ca_reg_write(&value, reg_off, 0);
mdelay(50);
}
}
}
static int ca_mdio_register(struct udevice *dev)
{
int ret;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct mii_dev *mdio_bus = mdio_alloc();
if (!mdio_bus)
return -ENOMEM;
mdio_bus->read = cortina_mdio_read;
mdio_bus->write = cortina_mdio_write;
snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name);
mdio_bus->priv = (void *)priv;
ret = mdio_register(mdio_bus);
if (ret)
return ret;
priv->mdio_bus = mdio_bus;
return 0;
}
static void ca_rgmii_init(struct cortina_ni_priv *priv)
{
struct GLOBAL_GLOBAL_CONFIG_t glb_config;
struct GLOBAL_IO_DRIVE_CONTROL_t io_drive_control;
/* Generating 25Mhz reference clock for switch */
ca_reg_read(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
glb_config.refclk_sel = 0x01;
glb_config.ext_reset = 0x01;
ca_reg_write(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
mdelay(20);
/* Do external reset */
ca_reg_read(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
glb_config.ext_reset = 0x0;
ca_reg_write(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
ca_reg_read(&io_drive_control, (u64)priv->glb_base_addr,
GLOBAL_IO_DRIVE_CONTROL_OFFSET);
io_drive_control.gmac_mode = 2;
io_drive_control.gmac_dn = 1;
io_drive_control.gmac_dp = 1;
ca_reg_write(&io_drive_control, (u64)priv->glb_base_addr,
GLOBAL_IO_DRIVE_CONTROL_OFFSET);
}
static int ca_phy_probe(struct udevice *dev)
{
int auto_scan_active_port = 0, tmp_port;
char *buf;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct phy_device *int_phydev, *ext_phydev;
/* Initialize internal phy device */
int_phydev = phy_connect(priv->mdio_bus,
priv->port_map[NI_PORT_3].phy_addr,
dev, priv->phy_interface);
if (int_phydev) {
int_phydev->supported &= PHY_GBIT_FEATURES;
int_phydev->advertising = int_phydev->supported;
phy_config(int_phydev);
} else {
printf("CA NI %s: There is no internal phy device\n", __func__);
}
/* Initialize external phy device */
ext_phydev = phy_connect(priv->mdio_bus,
priv->port_map[NI_PORT_4].phy_addr,
dev, priv->phy_interface);
if (ext_phydev) {
ext_phydev->supported &= PHY_GBIT_FEATURES;
ext_phydev->advertising = int_phydev->supported;
phy_config(ext_phydev);
} else {
printf("CA NI %s: There is no external phy device\n", __func__);
}
/* auto scan the first link up port as active_port */
buf = env_get("auto_scan_active_port");
if (buf != 0) {
auto_scan_active_port = simple_strtoul(buf, NULL, 0);
printf("CA NI %s: auto_scan_active_port=%d\n", __func__,
auto_scan_active_port);
}
if (auto_scan_active_port) {
ca_ni_auto_scan_active_port(priv);
} else {
buf = env_get("active_port");
if (buf != 0) {
tmp_port = simple_strtoul(buf, NULL, 0);
if (tmp_port < 0 &&
!(priv->valid_port_map && BIT(tmp_port))) {
printf("CA NI ERROR: not support this port.");
free(dev);
free(priv);
return 1;
}
priv->active_port = tmp_port;
}
}
printf("CA NI %s: active_port=%d\n", __func__, priv->active_port);
if (priv->active_port == NI_PORT_4)
priv->phydev = ext_phydev;
else
priv->phydev = int_phydev;
return 0;
}
static int cortina_eth_start(struct udevice *dev)
{
int ret;
struct NI_HV_XRAM_CPUXRAM_ADRCFG_RX_t cpuxram_adrcfg_rx;
struct NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_t cpuxram_adrcfg_tx;
struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg;
struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg;
struct NI_HV_PT_PORT_GLB_CFG_t port_glb_cfg;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct phy_device *phydev = priv->phydev;
ret = phy_startup(priv->phydev);
if (ret) {
ca_ni_led(priv->active_port, CA_LED_OFF);
printf("CA NI Could not initialize PHY %s, active_port=%d\n",
priv->phydev->dev->name, priv->active_port);
return ret;
}
if (!priv->phydev->link) {
printf("CA NI %s: link down.\n", priv->phydev->dev->name);
return 0;
}
ca_ni_led(priv->active_port, CA_LED_ON);
printf("CA NI PHY ID 0x%08X %dMbps %s duplex\n",
phydev->phy_id, phydev->speed,
phydev->duplex == DUPLEX_HALF ? "half" : "full");
/* RX XRAM ADDRESS CONFIG (start and end address) */
memset(&cpuxram_adrcfg_rx, 0, sizeof(cpuxram_adrcfg_rx));
cpuxram_adrcfg_rx.rx_top_addr = RX_TOP_ADDR;
cpuxram_adrcfg_rx.rx_base_addr = RX_BASE_ADDR;
ca_reg_write(&cpuxram_adrcfg_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_ADRCFG_RX_OFFSET);
/* TX XRAM ADDRESS CONFIG (start and end address) */
memset(&cpuxram_adrcfg_tx, 0, sizeof(cpuxram_adrcfg_tx));
cpuxram_adrcfg_tx.tx_top_addr = TX_TOP_ADDR;
cpuxram_adrcfg_tx.tx_base_addr = TX_BASE_ADDR;
ca_reg_write(&cpuxram_adrcfg_tx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_OFFSET);
/*
* Configuration for Management Ethernet Interface:
* - RGMII 1000 mode or RGMII 100 mode
* - MAC mode
*/
ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
if (phydev->speed == SPEED_1000) {
/* port 4 connects to RGMII PHY */
if (phydev->addr == 5)
port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_1000;
else
port_static_cfg.int_cfg = GE_MAC_INTF_GMII;
} else {
/* port 4 connects to RGMII PHY */
if (phydev->addr == 5)
port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_100;
else
port_static_cfg.int_cfg = GE_MAC_INTF_MII;
}
ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
ca_reg_read(&port_glb_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_GLB_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
port_glb_cfg.speed = phydev->speed == SPEED_10 ? 1 : 0;
port_glb_cfg.duplex = phydev->duplex == DUPLEX_HALF ? 1 : 0;
ca_reg_write(&port_glb_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_GLB_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
/* Need to toggle the tx and rx cpu_pkt_dis bit */
/* after changing Address config register. */
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.rx_0_cpu_pkt_dis = 1;
cpuxram_cfg.tx_0_cpu_pkt_dis = 1;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
ca_ni_enable_tx_rx();
return 0;
}
/*********************************************
* Packet receive routine from Management FE
* Expects a previously allocated buffer and
* fills the length
* Retruns 0 on success -1 on failure
*******************************************/
static int cortina_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
u8 *ptr;
u32 next_link, pktlen = 0;
u32 sw_rx_rd_ptr, hw_rx_wr_ptr, *rx_xram_ptr, *data_ptr;
int loop, index = 0, blk_num;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct NI_HEADER_X_T header_x;
struct NI_PACKET_STATUS packet_status;
struct NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_t cpuxram_cpu_sta_rx;
struct NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_t cpuxram_cpu_cfg_rx;
/* get the hw write pointer */
memset(&cpuxram_cpu_sta_rx, 0, sizeof(cpuxram_cpu_sta_rx));
ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr;
/* get the sw read pointer */
memset(&cpuxram_cpu_cfg_rx, 0, sizeof(cpuxram_cpu_cfg_rx));
ca_reg_read(&cpuxram_cpu_cfg_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
sw_rx_rd_ptr = cpuxram_cpu_cfg_rx.pkt_rd_ptr;
debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0 = 0x%p, ", __func__,
priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0 = 0x%p\n",
priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
debug("%s : RX hw_wr_ptr = %d, sw_rd_ptr = %d\n",
__func__, hw_rx_wr_ptr, sw_rx_rd_ptr);
while (sw_rx_rd_ptr != hw_rx_wr_ptr) {
/* Point to the absolute memory address of XRAM
* where read pointer is
*/
rx_xram_ptr = (u32 *)
((unsigned long)priv->ni_xram_base
+ sw_rx_rd_ptr * 8);
/* Wrap around if required */
if (rx_xram_ptr >= (u32 *)(unsigned long)priv->rx_xram_end_adr)
rx_xram_ptr = (u32 *)
(unsigned long)priv->rx_xram_base_adr;
/* Checking header XR. Do not update the read pointer yet */
/* skip unused 32-bit in Header XR */
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
memcpy(&header_x, rx_xram_ptr, sizeof(header_x));
next_link = header_x.next_link;
/* Header XR [31:0] */
if (*rx_xram_ptr == 0xffffffff)
printf("CA NI %s: XRAM Error !\n", __func__);
debug("%s : RX next link 0x%x\n", __func__, next_link);
debug("%s : bytes_valid %x\n", __func__, header_x.bytes_valid);
if (header_x.ownership == 0) {
/* point to Packet status [31:0] */
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
memcpy(&packet_status, rx_xram_ptr,
sizeof(*rx_xram_ptr));
if (packet_status.valid == 0) {
debug("%s: Invalid Packet !!, ", __func__);
debug("next_link=%d\n", next_link);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
return 0;
}
if (packet_status.drop ||
packet_status.runt ||
packet_status.oversize ||
packet_status.jabber ||
packet_status.crc_error ||
packet_status.jumbo) {
debug("%s: Error Packet!!, ", __func__);
debug("next_link=%d\n", next_link);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
return 0;
}
/* check whether packet size is larger than 1514 */
if (packet_status.packet_size > 1518) {
debug("%s: Error Packet !! Packet size=%d, ",
__func__, packet_status.packet_size);
debug("larger than 1518, next_link=%d\n",
next_link);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
return 0;
}
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
pktlen = packet_status.packet_size;
debug("%s : rx packet length = %d\n",
__func__, packet_status.packet_size);
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
data_ptr = (u32 *)net_rx_packets[index];
/* Read out the packet */
/* Data is in little endian form in the XRAM */
/* Send the packet to upper layer */
debug("%s: packet data[]=", __func__);
for (loop = 0; loop <= pktlen / 4; loop++) {
ptr = (u8 *)rx_xram_ptr;
if (loop < 10)
debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]",
ptr[0], ptr[1], ptr[2], ptr[3]);
*data_ptr++ = *rx_xram_ptr++;
/* Wrap around if required */
if (rx_xram_ptr >= (u32 *)
(unsigned long)priv->rx_xram_end_adr) {
rx_xram_ptr = (u32 *)(unsigned long)
(priv->rx_xram_base_adr);
}
}
debug("\n");
net_process_received_packet(net_rx_packets[index],
pktlen);
if (++index >= PKTBUFSRX)
index = 0;
blk_num = net_rx_packets[index][0x2c] * 255 +
net_rx_packets[index][0x2d];
debug("%s: tftp block number=%d\n", __func__, blk_num);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
}
/* get the hw write pointer */
ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr;
/* get the sw read pointer */
ca_reg_read(&sw_rx_rd_ptr, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
}
return 0;
}
static int cortina_eth_send(struct udevice *dev, void *packet, int length)
{
u32 hw_tx_rd_ptr = 0, sw_tx_wr_ptr = 0;
u32 loop, new_pkt_len, ca_crc32;
u32 *tx_xram_ptr, *data_ptr;
u16 next_link = 0;
u8 *ptr, *pkt_buf_ptr, valid_bytes = 0;
int pad = 0;
static u8 pkt_buf[2048];
struct NI_HEADER_X_T hdr_xt;
struct NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_t cpuxram_cpu_cfg_tx;
struct cortina_ni_priv *priv = dev_get_priv(dev);
if (!packet || length > 2032)
return -1;
/* Get the hardware read pointer */
ca_reg_read(&hw_tx_rd_ptr, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET);
/* Get the software write pointer */
ca_reg_read(&sw_tx_wr_ptr, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET);
debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0=0x%p, ",
__func__,
KSEG1_ATU_XLAT(priv->ni_hv_base_addr +
NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET));
debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0=0x%p\n",
KSEG1_ATU_XLAT(priv->ni_hv_base_addr +
NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET));
debug("%s : hw_tx_rd_ptr = %d\n", __func__, hw_tx_rd_ptr);
debug("%s : sw_tx_wr_ptr = %d\n", __func__, sw_tx_wr_ptr);
if (hw_tx_rd_ptr != sw_tx_wr_ptr) {
printf("CA NI %s: Tx FIFO is not available!\n", __func__);
return 1;
}
/* a workaround on 2015/10/01
* the packet size+CRC should be 8-byte alignment
*/
if (((length + 4) % 8) != 0)
length += (8 - ((length + 4) % 8));
memset(pkt_buf, 0x00, sizeof(pkt_buf));
/* add 8-byte header_A at the beginning of packet */
memcpy(&pkt_buf[HEADER_A_SIZE], (const void *)packet, length);
pad = 64 - (length + 4); /* if packet length < 60 */
pad = (pad < 0) ? 0 : pad;
debug("%s: length=%d, pad=%d\n", __func__, length, pad);
new_pkt_len = length + pad; /* new packet length */
pkt_buf_ptr = (u8 *)pkt_buf;
/* Calculate the CRC32, skip 8-byte header_A */
ca_crc32 = crc32(0, (u8 *)(pkt_buf_ptr + HEADER_A_SIZE), new_pkt_len);
debug("%s: crc32 is 0x%x\n", __func__, ca_crc32);
debug("%s: ~crc32 is 0x%x\n", __func__, ~ca_crc32);
debug("%s: pkt len %d\n", __func__, new_pkt_len);
/* should add 8-byte header_! */
/* CRC will re-calculated by hardware */
memcpy((pkt_buf_ptr + new_pkt_len + HEADER_A_SIZE),
(u8 *)(&ca_crc32), sizeof(ca_crc32));
new_pkt_len = new_pkt_len + 4; /* add CRC */
valid_bytes = new_pkt_len % 8;
valid_bytes = valid_bytes ? valid_bytes : 0;
debug("%s: valid_bytes %d\n", __func__, valid_bytes);
/* should add 8-byte headerA */
next_link = sw_tx_wr_ptr +
(new_pkt_len + 7 + HEADER_A_SIZE) / 8; /* for headr XT */
/* add header */
next_link = next_link + 1;
/* Wrap around if required */
if (next_link > priv->tx_xram_end) {
next_link = priv->tx_xram_start +
(next_link - (priv->tx_xram_end + 1));
}
debug("%s: TX next_link %x\n", __func__, next_link);
memset(&hdr_xt, 0, sizeof(hdr_xt));
hdr_xt.ownership = 1;
hdr_xt.bytes_valid = valid_bytes;
hdr_xt.next_link = next_link;
tx_xram_ptr = (u32 *)((unsigned long)priv->ni_xram_base
+ sw_tx_wr_ptr * 8);
/* Wrap around if required */
if (tx_xram_ptr >= (u32 *)(unsigned long)priv->tx_xram_end_adr)
tx_xram_ptr = (u32 *)(unsigned long)priv->tx_xram_base_adr;
tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
priv->tx_xram_base_adr,
priv->tx_xram_end_adr);
memcpy(tx_xram_ptr, &hdr_xt, sizeof(*tx_xram_ptr));
tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
priv->tx_xram_base_adr,
priv->tx_xram_end_adr);
/* Now to copy the data. The first byte on the line goes first */
data_ptr = (u32 *)pkt_buf_ptr;
debug("%s: packet data[]=", __func__);
/* copy header_A to XRAM */
for (loop = 0; loop <= (new_pkt_len + HEADER_A_SIZE) / 4; loop++) {
ptr = (u8 *)data_ptr;
if ((loop % 4) == 0)
debug("\n");
debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]-",
ptr[0], ptr[1], ptr[2], ptr[3]);
*tx_xram_ptr = *data_ptr++;
tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
priv->tx_xram_base_adr,
priv->tx_xram_end_adr);
}
debug("\n");
/* Publish the software write pointer */
cpuxram_cpu_cfg_tx.pkt_wr_ptr = next_link;
ca_reg_write(&cpuxram_cpu_cfg_tx,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET);
return 0;
}
static void cortina_eth_stop(struct udevice *netdev)
{
/* Nothing to do for now. */
}
static int cortina_eth_probe(struct udevice *dev)
{
int ret, reg_value;
struct cortina_ni_priv *priv;
priv = dev_get_priv(dev);
priv->rx_xram_base_adr = priv->ni_xram_base + (RX_BASE_ADDR * 8);
priv->rx_xram_end_adr = priv->ni_xram_base + ((RX_TOP_ADDR + 1) * 8);
priv->rx_xram_start = RX_BASE_ADDR;
priv->rx_xram_end = RX_TOP_ADDR;
priv->tx_xram_base_adr = priv->ni_xram_base + (TX_BASE_ADDR * 8);
priv->tx_xram_end_adr = priv->ni_xram_base + ((TX_TOP_ADDR + 1) * 8);
priv->tx_xram_start = TX_BASE_ADDR;
priv->tx_xram_end = TX_TOP_ADDR;
curr_dev = dev;
debug("%s: rx_base_addr:%x\t rx_top_addr %x\n",
__func__, priv->rx_xram_start, priv->rx_xram_end);
debug("%s: tx_base_addr:%x\t tx_top_addr %x\n",
__func__, priv->tx_xram_start, priv->tx_xram_end);
debug("%s: rx physical start address = %x end address = %x\n",
__func__, priv->rx_xram_base_adr, priv->rx_xram_end_adr);
debug("%s: tx physical start address = %x end address = %x\n",
__func__, priv->tx_xram_base_adr, priv->tx_xram_end_adr);
/* MDIO register */
ret = ca_mdio_register(dev);
if (ret)
return ret;
/* set MDIO pre-scale value */
ca_reg_read(®_value, (u64)priv->per_mdio_base_addr,
PER_MDIO_CFG_OFFSET);
reg_value = reg_value | 0x00280000;
ca_reg_write(®_value, (u64)priv->per_mdio_base_addr,
PER_MDIO_CFG_OFFSET);
ca_phy_probe(dev);
priv->phydev->addr = priv->port_map[priv->active_port].phy_addr;
ca_ni_led(priv->active_port, CA_LED_ON);
ca_ni_reset();
printf("CA NI %s: active_port=%d, phy_addr=%d\n",
__func__, priv->active_port, priv->phydev->addr);
printf("CA NI %s: phy_id=0x%x, phy_id & PHY_ID_MASK=0x%x\n", __func__,
priv->phydev->phy_id, priv->phydev->phy_id & 0xFFFFFFF0);
/* parsing ethaddr and set to NI registers. */
ca_ni_setup_mac_addr();
#ifdef MIIPHY_REGISTER
/* the phy_read and phy_write
* should meet the proto type of miiphy_register
*/
miiphy_register(dev->name, ca_miiphy_read, ca_miiphy_write);
#endif
if (priv->init_rgmii) {
/* hardware settings for RGMII port */
ca_rgmii_init(priv);
}
if (priv->gphy_num > 0) {
/* do internal gphy calibration */
ca_internal_gphy_cal(priv);
}
return 0;
}
static int ca_ni_of_to_plat(struct udevice *dev)
{
int i, ret;
struct cortina_ni_priv *priv = dev_get_priv(dev);
memset(priv, 0, sizeof(struct cortina_ni_priv));
priv->glb_base_addr = dev_remap_addr_index(dev, 0);
if (!priv->glb_base_addr)
return -ENOENT;
printf("CA NI %s: priv->glb_base_addr for index 0 is 0x%p\n",
__func__, priv->glb_base_addr);
priv->per_mdio_base_addr = dev_remap_addr_index(dev, 1);
if (!priv->per_mdio_base_addr)
return -ENOENT;
printf("CA NI %s: priv->per_mdio_base_addr for index 1 is 0x%p\n",
__func__, priv->per_mdio_base_addr);
priv->ni_hv_base_addr = dev_remap_addr_index(dev, 2);
if (!priv->ni_hv_base_addr)
return -ENOENT;
printf("CA NI %s: priv->ni_hv_base_addr for index 2 is 0x%p\n",
__func__, priv->ni_hv_base_addr);
priv->valid_port_map = dev_read_u32_default(dev, "valid-port-map", 1);
priv->valid_port_num = dev_read_u32_default(dev, "valid-port-num", 1);
for (i = 0; i < priv->valid_port_num; i++) {
ret = dev_read_u32_index(dev, "valid-ports", i * 2,
&priv->port_map[i].phy_addr);
ret = dev_read_u32_index(dev, "valid-ports", (i * 2) + 1,
&priv->port_map[i].port);
}
priv->gphy_num = dev_read_u32_default(dev, "inter-gphy-num", 1);
for (i = 0; i < priv->gphy_num; i++) {
ret = dev_read_u32_index(dev, "inter-gphy-val", i * 2,
&priv->gphy_values[i].reg_off);
ret = dev_read_u32_index(dev, "inter-gphy-val", (i * 2) + 1,
&priv->gphy_values[i].value);
}
priv->active_port = dev_read_u32_default(dev, "def-active-port", 1);
priv->init_rgmii = dev_read_u32_default(dev, "init-rgmii", 1);
priv->ni_xram_base = dev_read_u32_default(dev, "ni-xram-base", 1);
return 0;
}
static const struct eth_ops cortina_eth_ops = {
.start = cortina_eth_start,
.send = cortina_eth_send,
.recv = cortina_eth_recv,
.stop = cortina_eth_stop,
};
static const struct udevice_id cortina_eth_ids[] = {
{ .compatible = "eth_cortina" },
{ }
};
U_BOOT_DRIVER(eth_cortina) = {
.name = "eth_cortina",
.id = UCLASS_ETH,
.of_match = cortina_eth_ids,
.probe = cortina_eth_probe,
.ops = &cortina_eth_ops,
.priv_auto = sizeof(struct cortina_ni_priv),
.plat_auto = sizeof(struct eth_pdata),
.of_to_plat = ca_ni_of_to_plat,
};
|