aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/eepro100.c
blob: f2cd32c548d86fc175520b9436c55032b2aaa79f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
/*
 * (C) Copyright 2002
 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <asm/io.h>
#include <pci.h>
#include <miiphy.h>

#undef DEBUG

	/* Ethernet chip registers.
	 */
#define SCBStatus		0	/* Rx/Command Unit Status *Word* */
#define SCBIntAckByte		1	/* Rx/Command Unit STAT/ACK byte */
#define SCBCmd			2	/* Rx/Command Unit Command *Word* */
#define SCBIntrCtlByte		3	/* Rx/Command Unit Intr.Control Byte */
#define SCBPointer		4	/* General purpose pointer. */
#define SCBPort			8	/* Misc. commands and operands. */
#define SCBflash		12	/* Flash memory control. */
#define SCBeeprom		14	/* EEPROM memory control. */
#define SCBCtrlMDI		16	/* MDI interface control. */
#define SCBEarlyRx		20	/* Early receive byte count. */
#define SCBGenControl		28	/* 82559 General Control Register */
#define SCBGenStatus		29	/* 82559 General Status register */

	/* 82559 SCB status word defnitions
	 */
#define SCB_STATUS_CX		0x8000	/* CU finished command (transmit) */
#define SCB_STATUS_FR		0x4000	/* frame received */
#define SCB_STATUS_CNA		0x2000	/* CU left active state */
#define SCB_STATUS_RNR		0x1000	/* receiver left ready state */
#define SCB_STATUS_MDI		0x0800	/* MDI read/write cycle done */
#define SCB_STATUS_SWI		0x0400	/* software generated interrupt */
#define SCB_STATUS_FCP		0x0100	/* flow control pause interrupt */

#define SCB_INTACK_MASK		0xFD00	/* all the above */

#define SCB_INTACK_TX		(SCB_STATUS_CX | SCB_STATUS_CNA)
#define SCB_INTACK_RX		(SCB_STATUS_FR | SCB_STATUS_RNR)

	/* System control block commands
	 */
/* CU Commands */
#define CU_NOP			0x0000
#define CU_START		0x0010
#define CU_RESUME		0x0020
#define CU_STATSADDR		0x0040	/* Load Dump Statistics ctrs addr */
#define CU_SHOWSTATS		0x0050	/* Dump statistics counters. */
#define CU_ADDR_LOAD		0x0060	/* Base address to add to CU commands */
#define CU_DUMPSTATS		0x0070	/* Dump then reset stats counters. */

/* RUC Commands */
#define RUC_NOP			0x0000
#define RUC_START		0x0001
#define RUC_RESUME		0x0002
#define RUC_ABORT		0x0004
#define RUC_ADDR_LOAD		0x0006	/* (seems not to clear on acceptance) */
#define RUC_RESUMENR		0x0007

#define CU_CMD_MASK		0x00f0
#define RU_CMD_MASK		0x0007

#define SCB_M			0x0100	/* 0 = enable interrupt, 1 = disable */
#define SCB_SWI			0x0200	/* 1 - cause device to interrupt */

#define CU_STATUS_MASK		0x00C0
#define RU_STATUS_MASK		0x003C

#define RU_STATUS_IDLE		(0<<2)
#define RU_STATUS_SUS		(1<<2)
#define RU_STATUS_NORES		(2<<2)
#define RU_STATUS_READY		(4<<2)
#define RU_STATUS_NO_RBDS_SUS	((1<<2)|(8<<2))
#define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
#define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))

	/* 82559 Port interface commands.
	 */
#define I82559_RESET		0x00000000	/* Software reset */
#define I82559_SELFTEST		0x00000001	/* 82559 Selftest command */
#define I82559_SELECTIVE_RESET	0x00000002
#define I82559_DUMP		0x00000003
#define I82559_DUMP_WAKEUP	0x00000007

	/* 82559 Eeprom interface.
	 */
#define EE_SHIFT_CLK		0x01	/* EEPROM shift clock. */
#define EE_CS			0x02	/* EEPROM chip select. */
#define EE_DATA_WRITE		0x04	/* EEPROM chip data in. */
#define EE_WRITE_0		0x01
#define EE_WRITE_1		0x05
#define EE_DATA_READ		0x08	/* EEPROM chip data out. */
#define EE_ENB			(0x4800 | EE_CS)
#define EE_CMD_BITS		3
#define EE_DATA_BITS		16

	/* The EEPROM commands include the alway-set leading bit.
	 */
#define EE_EWENB_CMD		(4 << addr_len)
#define EE_WRITE_CMD		(5 << addr_len)
#define EE_READ_CMD		(6 << addr_len)
#define EE_ERASE_CMD		(7 << addr_len)

	/* Receive frame descriptors.
	 */
struct RxFD {
	volatile u16 status;
	volatile u16 control;
	volatile u32 link;		/* struct RxFD * */
	volatile u32 rx_buf_addr;	/* void * */
	volatile u32 count;

	volatile u8 data[PKTSIZE_ALIGN];
};

#define RFD_STATUS_C		0x8000	/* completion of received frame */
#define RFD_STATUS_OK		0x2000	/* frame received with no errors */

#define RFD_CONTROL_EL		0x8000	/* 1=last RFD in RFA */
#define RFD_CONTROL_S		0x4000	/* 1=suspend RU after receiving frame */
#define RFD_CONTROL_H		0x0010	/* 1=RFD is a header RFD */
#define RFD_CONTROL_SF		0x0008	/* 0=simplified, 1=flexible mode */

#define RFD_COUNT_MASK		0x3fff
#define RFD_COUNT_F		0x4000
#define RFD_COUNT_EOF		0x8000

#define RFD_RX_CRC		0x0800	/* crc error */
#define RFD_RX_ALIGNMENT	0x0400	/* alignment error */
#define RFD_RX_RESOURCE		0x0200	/* out of space, no resources */
#define RFD_RX_DMA_OVER		0x0100	/* DMA overrun */
#define RFD_RX_SHORT		0x0080	/* short frame error */
#define RFD_RX_LENGTH		0x0020
#define RFD_RX_ERROR		0x0010	/* receive error */
#define RFD_RX_NO_ADR_MATCH	0x0004	/* no address match */
#define RFD_RX_IA_MATCH		0x0002	/* individual address does not match */
#define RFD_RX_TCO		0x0001	/* TCO indication */

	/* Transmit frame descriptors
	 */
struct TxFD {				/* Transmit frame descriptor set. */
	volatile u16 status;
	volatile u16 command;
	volatile u32 link;		/* void * */
	volatile u32 tx_desc_addr;	/* Always points to the tx_buf_addr element. */
	volatile s32 count;

	volatile u32 tx_buf_addr0;	/* void *, frame to be transmitted.  */
	volatile s32 tx_buf_size0;	/* Length of Tx frame. */
	volatile u32 tx_buf_addr1;	/* void *, frame to be transmitted.  */
	volatile s32 tx_buf_size1;	/* Length of Tx frame. */
};

#define TxCB_CMD_TRANSMIT	0x0004	/* transmit command */
#define TxCB_CMD_SF		0x0008	/* 0=simplified, 1=flexible mode */
#define TxCB_CMD_NC		0x0010	/* 0=CRC insert by controller */
#define TxCB_CMD_I		0x2000	/* generate interrupt on completion */
#define TxCB_CMD_S		0x4000	/* suspend on completion */
#define TxCB_CMD_EL		0x8000	/* last command block in CBL */

#define TxCB_COUNT_MASK		0x3fff
#define TxCB_COUNT_EOF		0x8000

	/* The Speedo3 Rx and Tx frame/buffer descriptors.
	 */
struct descriptor {			/* A generic descriptor. */
	volatile u16 status;
	volatile u16 command;
	volatile u32 link;		/* struct descriptor *	*/

	unsigned char params[0];
};

#define CONFIG_SYS_CMD_EL		0x8000
#define CONFIG_SYS_CMD_SUSPEND		0x4000
#define CONFIG_SYS_CMD_INT		0x2000
#define CONFIG_SYS_CMD_IAS		0x0001	/* individual address setup */
#define CONFIG_SYS_CMD_CONFIGURE	0x0002	/* configure */

#define CONFIG_SYS_STATUS_C		0x8000
#define CONFIG_SYS_STATUS_OK		0x2000

	/* Misc.
	 */
#define NUM_RX_DESC		PKTBUFSRX
#define NUM_TX_DESC		1	/* Number of TX descriptors   */

#define TOUT_LOOP		1000000

#define ETH_ALEN		6

static struct RxFD rx_ring[NUM_RX_DESC];	/* RX descriptor ring	      */
static struct TxFD tx_ring[NUM_TX_DESC];	/* TX descriptor ring	      */
static int rx_next;			/* RX descriptor ring pointer */
static int tx_next;			/* TX descriptor ring pointer */
static int tx_threshold;

/*
 * The parameters for a CmdConfigure operation.
 * There are so many options that it would be difficult to document
 * each bit. We mostly use the default or recommended settings.
 */
static const char i82557_config_cmd[] = {
	22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1,	/* 1=Use MII  0=Use AUI */
	0, 0x2E, 0, 0x60, 0,
	0xf2, 0x48, 0, 0x40, 0xf2, 0x80,	/* 0x40=Force full-duplex */
	0x3f, 0x05,
};
static const char i82558_config_cmd[] = {
	22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1,	/* 1=Use MII  0=Use AUI */
	0, 0x2E, 0, 0x60, 0x08, 0x88,
	0x68, 0, 0x40, 0xf2, 0x84,		/* Disable FC */
	0x31, 0x05,
};

static void init_rx_ring (struct eth_device *dev);
static void purge_tx_ring (struct eth_device *dev);

static void read_hw_addr (struct eth_device *dev, bd_t * bis);

static int eepro100_init (struct eth_device *dev, bd_t * bis);
static int eepro100_send(struct eth_device *dev, void *packet, int length);
static int eepro100_recv (struct eth_device *dev);
static void eepro100_halt (struct eth_device *dev);

#if defined(CONFIG_E500)
#define bus_to_phys(a) (a)
#define phys_to_bus(a) (a)
#else
#define bus_to_phys(a)	pci_mem_to_phys((pci_dev_t)dev->priv, a)
#define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
#endif

static inline int INW (struct eth_device *dev, u_long addr)
{
	return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
}

static inline void OUTW (struct eth_device *dev, int command, u_long addr)
{
	*(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
}

static inline void OUTL (struct eth_device *dev, int command, u_long addr)
{
	*(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
}

#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
static inline int INL (struct eth_device *dev, u_long addr)
{
	return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
}

static int get_phyreg (struct eth_device *dev, unsigned char addr,
		unsigned char reg, unsigned short *value)
{
	int cmd;
	int timeout = 50;

	/* read requested data */
	cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
	OUTL (dev, cmd, SCBCtrlMDI);

	do {
		udelay(1000);
		cmd = INL (dev, SCBCtrlMDI);
	} while (!(cmd & (1 << 28)) && (--timeout));

	if (timeout == 0)
		return -1;

	*value = (unsigned short) (cmd & 0xffff);

	return 0;
}

static int set_phyreg (struct eth_device *dev, unsigned char addr,
		unsigned char reg, unsigned short value)
{
	int cmd;
	int timeout = 50;

	/* write requested data */
	cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
	OUTL (dev, cmd | value, SCBCtrlMDI);

	while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
		udelay(1000);

	if (timeout == 0)
		return -1;

	return 0;
}

/* Check if given phyaddr is valid, i.e. there is a PHY connected.
 * Do this by checking model value field from ID2 register.
 */
static struct eth_device* verify_phyaddr (const char *devname,
						unsigned char addr)
{
	struct eth_device *dev;
	unsigned short value;
	unsigned char model;

	dev = eth_get_dev_by_name(devname);
	if (dev == NULL) {
		printf("%s: no such device\n", devname);
		return NULL;
	}

	/* read id2 register */
	if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
		printf("%s: mii read timeout!\n", devname);
		return NULL;
	}

	/* get model */
	model = (unsigned char)((value >> 4) & 0x003f);

	if (model == 0) {
		printf("%s: no PHY at address %d\n", devname, addr);
		return NULL;
	}

	return dev;
}

static int eepro100_miiphy_read(const char *devname, unsigned char addr,
		unsigned char reg, unsigned short *value)
{
	struct eth_device *dev;

	dev = verify_phyaddr(devname, addr);
	if (dev == NULL)
		return -1;

	if (get_phyreg(dev, addr, reg, value) != 0) {
		printf("%s: mii read timeout!\n", devname);
		return -1;
	}

	return 0;
}

static int eepro100_miiphy_write(const char *devname, unsigned char addr,
		unsigned char reg, unsigned short value)
{
	struct eth_device *dev;

	dev = verify_phyaddr(devname, addr);
	if (dev == NULL)
		return -1;

	if (set_phyreg(dev, addr, reg, value) != 0) {
		printf("%s: mii write timeout!\n", devname);
		return -1;
	}

	return 0;
}

#endif

/* Wait for the chip get the command.
*/
static int wait_for_eepro100 (struct eth_device *dev)
{
	int i;

	for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
		if (i >= TOUT_LOOP) {
			return 0;
		}
	}

	return 1;
}

static struct pci_device_id supported[] = {
	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
	{}
};

int eepro100_initialize (bd_t * bis)
{
	pci_dev_t devno;
	int card_number = 0;
	struct eth_device *dev;
	u32 iobase, status;
	int idx = 0;

	while (1) {
		/* Find PCI device
		 */
		if ((devno = pci_find_devices (supported, idx++)) < 0) {
			break;
		}

		pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
		iobase &= ~0xf;

#ifdef DEBUG
		printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
				iobase);
#endif

		pci_write_config_dword (devno,
					PCI_COMMAND,
					PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);

		/* Check if I/O accesses and Bus Mastering are enabled.
		 */
		pci_read_config_dword (devno, PCI_COMMAND, &status);
		if (!(status & PCI_COMMAND_MEMORY)) {
			printf ("Error: Can not enable MEM access.\n");
			continue;
		}

		if (!(status & PCI_COMMAND_MASTER)) {
			printf ("Error: Can not enable Bus Mastering.\n");
			continue;
		}

		dev = (struct eth_device *) malloc (sizeof *dev);
		if (!dev) {
			printf("eepro100: Can not allocate memory\n");
			break;
		}
		memset(dev, 0, sizeof(*dev));

		sprintf (dev->name, "i82559#%d", card_number);
		dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
		dev->iobase = bus_to_phys (iobase);
		dev->init = eepro100_init;
		dev->halt = eepro100_halt;
		dev->send = eepro100_send;
		dev->recv = eepro100_recv;

		eth_register (dev);

#if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
		/* register mii command access routines */
		miiphy_register(dev->name,
				eepro100_miiphy_read, eepro100_miiphy_write);
#endif

		card_number++;

		/* Set the latency timer for value.
		 */
		pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);

		udelay (10 * 1000);

		read_hw_addr (dev, bis);
	}

	return card_number;
}


static int eepro100_init (struct eth_device *dev, bd_t * bis)
{
	int i, status = -1;
	int tx_cur;
	struct descriptor *ias_cmd, *cfg_cmd;

	/* Reset the ethernet controller
	 */
	OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
	udelay (20);

	OUTL (dev, I82559_RESET, SCBPort);
	udelay (20);

	if (!wait_for_eepro100 (dev)) {
		printf ("Error: Can not reset ethernet controller.\n");
		goto Done;
	}
	OUTL (dev, 0, SCBPointer);
	OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);

	if (!wait_for_eepro100 (dev)) {
		printf ("Error: Can not reset ethernet controller.\n");
		goto Done;
	}
	OUTL (dev, 0, SCBPointer);
	OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);

	/* Initialize Rx and Tx rings.
	 */
	init_rx_ring (dev);
	purge_tx_ring (dev);

	/* Tell the adapter where the RX ring is located.
	 */
	if (!wait_for_eepro100 (dev)) {
		printf ("Error: Can not reset ethernet controller.\n");
		goto Done;
	}

	OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
	OUTW (dev, SCB_M | RUC_START, SCBCmd);

	/* Send the Configure frame */
	tx_cur = tx_next;
	tx_next = ((tx_next + 1) % NUM_TX_DESC);

	cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
	cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
	cfg_cmd->status = 0;
	cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));

	memcpy (cfg_cmd->params, i82558_config_cmd,
			sizeof (i82558_config_cmd));

	if (!wait_for_eepro100 (dev)) {
		printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
		goto Done;
	}

	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
	OUTW (dev, SCB_M | CU_START, SCBCmd);

	for (i = 0;
	     !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
	     i++) {
		if (i >= TOUT_LOOP) {
			printf ("%s: Tx error buffer not ready\n", dev->name);
			goto Done;
		}
	}

	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
		printf ("TX error status = 0x%08X\n",
			le16_to_cpu (tx_ring[tx_cur].status));
		goto Done;
	}

	/* Send the Individual Address Setup frame
	 */
	tx_cur = tx_next;
	tx_next = ((tx_next + 1) % NUM_TX_DESC);

	ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
	ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
	ias_cmd->status = 0;
	ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));

	memcpy (ias_cmd->params, dev->enetaddr, 6);

	/* Tell the adapter where the TX ring is located.
	 */
	if (!wait_for_eepro100 (dev)) {
		printf ("Error: Can not reset ethernet controller.\n");
		goto Done;
	}

	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
	OUTW (dev, SCB_M | CU_START, SCBCmd);

	for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
		 i++) {
		if (i >= TOUT_LOOP) {
			printf ("%s: Tx error buffer not ready\n",
				dev->name);
			goto Done;
		}
	}

	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
		printf ("TX error status = 0x%08X\n",
			le16_to_cpu (tx_ring[tx_cur].status));
		goto Done;
	}

	status = 0;

  Done:
	return status;
}

static int eepro100_send(struct eth_device *dev, void *packet, int length)
{
	int i, status = -1;
	int tx_cur;

	if (length <= 0) {
		printf ("%s: bad packet size: %d\n", dev->name, length);
		goto Done;
	}

	tx_cur = tx_next;
	tx_next = (tx_next + 1) % NUM_TX_DESC;

	tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
						TxCB_CMD_SF	|
						TxCB_CMD_S	|
						TxCB_CMD_EL );
	tx_ring[tx_cur].status = 0;
	tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
	tx_ring[tx_cur].link =
		cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
	tx_ring[tx_cur].tx_desc_addr =
		cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
	tx_ring[tx_cur].tx_buf_addr0 =
		cpu_to_le32 (phys_to_bus ((u_long) packet));
	tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);

	if (!wait_for_eepro100 (dev)) {
		printf ("%s: Tx error ethernet controller not ready.\n",
				dev->name);
		goto Done;
	}

	/* Send the packet.
	 */
	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
	OUTW (dev, SCB_M | CU_START, SCBCmd);

	for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
		 i++) {
		if (i >= TOUT_LOOP) {
			printf ("%s: Tx error buffer not ready\n", dev->name);
			goto Done;
		}
	}

	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
		printf ("TX error status = 0x%08X\n",
			le16_to_cpu (tx_ring[tx_cur].status));
		goto Done;
	}

	status = length;

  Done:
	return status;
}

static int eepro100_recv (struct eth_device *dev)
{
	u16 status, stat;
	int rx_prev, length = 0;

	stat = INW (dev, SCBStatus);
	OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);

	for (;;) {
		status = le16_to_cpu (rx_ring[rx_next].status);

		if (!(status & RFD_STATUS_C)) {
			break;
		}

		/* Valid frame status.
		 */
		if ((status & RFD_STATUS_OK)) {
			/* A valid frame received.
			 */
			length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;

			/* Pass the packet up to the protocol
			 * layers.
			 */
			net_process_received_packet((u8 *)rx_ring[rx_next].data,
						    length);
		} else {
			/* There was an error.
			 */
			printf ("RX error status = 0x%08X\n", status);
		}

		rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
		rx_ring[rx_next].status = 0;
		rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);

		rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
		rx_ring[rx_prev].control = 0;

		/* Update entry information.
		 */
		rx_next = (rx_next + 1) % NUM_RX_DESC;
	}

	if (stat & SCB_STATUS_RNR) {

		printf ("%s: Receiver is not ready, restart it !\n", dev->name);

		/* Reinitialize Rx ring.
		 */
		init_rx_ring (dev);

		if (!wait_for_eepro100 (dev)) {
			printf ("Error: Can not restart ethernet controller.\n");
			goto Done;
		}

		OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
		OUTW (dev, SCB_M | RUC_START, SCBCmd);
	}

  Done:
	return length;
}

static void eepro100_halt (struct eth_device *dev)
{
	/* Reset the ethernet controller
	 */
	OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
	udelay (20);

	OUTL (dev, I82559_RESET, SCBPort);
	udelay (20);

	if (!wait_for_eepro100 (dev)) {
		printf ("Error: Can not reset ethernet controller.\n");
		goto Done;
	}
	OUTL (dev, 0, SCBPointer);
	OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);

	if (!wait_for_eepro100 (dev)) {
		printf ("Error: Can not reset ethernet controller.\n");
		goto Done;
	}
	OUTL (dev, 0, SCBPointer);
	OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);

  Done:
	return;
}

	/* SROM Read.
	 */
static int read_eeprom (struct eth_device *dev, int location, int addr_len)
{
	unsigned short retval = 0;
	int read_cmd = location | EE_READ_CMD;
	int i;

	OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
	OUTW (dev, EE_ENB, SCBeeprom);

	/* Shift the read command bits out. */
	for (i = 12; i >= 0; i--) {
		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;

		OUTW (dev, EE_ENB | dataval, SCBeeprom);
		udelay (1);
		OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
		udelay (1);
	}
	OUTW (dev, EE_ENB, SCBeeprom);

	for (i = 15; i >= 0; i--) {
		OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
		udelay (1);
		retval = (retval << 1) |
				((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
		OUTW (dev, EE_ENB, SCBeeprom);
		udelay (1);
	}

	/* Terminate the EEPROM access. */
	OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
	return retval;
}

#ifdef CONFIG_EEPRO100_SROM_WRITE
int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
{
    unsigned short dataval;
    int enable_cmd = 0x3f | EE_EWENB_CMD;
    int write_cmd  = location | EE_WRITE_CMD;
    int i;
    unsigned long datalong, tmplong;

    OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
    udelay(1);
    OUTW(dev, EE_ENB, SCBeeprom);

    /* Shift the enable command bits out. */
    for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
    {
	dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
	OUTW(dev, EE_ENB | dataval, SCBeeprom);
	udelay(1);
	OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
	udelay(1);
    }

    OUTW(dev, EE_ENB, SCBeeprom);
    udelay(1);
    OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
    udelay(1);
    OUTW(dev, EE_ENB, SCBeeprom);


    /* Shift the write command bits out. */
    for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
    {
	dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
	OUTW(dev, EE_ENB | dataval, SCBeeprom);
	udelay(1);
	OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
	udelay(1);
    }

    /* Write the data */
    datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));

    for (i = 0; i< EE_DATA_BITS; i++)
    {
    /* Extract and move data bit to bit DI */
    dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;

    OUTW(dev, EE_ENB | dataval, SCBeeprom);
    udelay(1);
    OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
    udelay(1);
    OUTW(dev, EE_ENB | dataval, SCBeeprom);
    udelay(1);

    datalong = datalong << 1;	/* Adjust significant data bit*/
    }

    /* Finish up command  (toggle CS) */
    OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
    udelay(1);			/* delay for more than 250 ns */
    OUTW(dev, EE_ENB, SCBeeprom);

    /* Wait for programming ready (D0 = 1) */
    tmplong = 10;
    do
    {
	dataval = INW(dev, SCBeeprom);
	if (dataval & EE_DATA_READ)
	    break;
	udelay(10000);
    }
    while (-- tmplong);

    if (tmplong == 0)
    {
	printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
	return -1;
    }

    /* Terminate the EEPROM access. */
    OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);

    return 0;
}
#endif

static void init_rx_ring (struct eth_device *dev)
{
	int i;

	for (i = 0; i < NUM_RX_DESC; i++) {
		rx_ring[i].status = 0;
		rx_ring[i].control =
				(i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
		rx_ring[i].link =
				cpu_to_le32 (phys_to_bus
							 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
		rx_ring[i].rx_buf_addr = 0xffffffff;
		rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
	}

	rx_next = 0;
}

static void purge_tx_ring (struct eth_device *dev)
{
	int i;

	tx_next = 0;
	tx_threshold = 0x01208000;

	for (i = 0; i < NUM_TX_DESC; i++) {
		tx_ring[i].status = 0;
		tx_ring[i].command = 0;
		tx_ring[i].link = 0;
		tx_ring[i].tx_desc_addr = 0;
		tx_ring[i].count = 0;

		tx_ring[i].tx_buf_addr0 = 0;
		tx_ring[i].tx_buf_size0 = 0;
		tx_ring[i].tx_buf_addr1 = 0;
		tx_ring[i].tx_buf_size1 = 0;
	}
}

static void read_hw_addr (struct eth_device *dev, bd_t * bis)
{
	u16 sum = 0;
	int i, j;
	int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;

	for (j = 0, i = 0; i < 0x40; i++) {
		u16 value = read_eeprom (dev, i, addr_len);

		sum += value;
		if (i < 3) {
			dev->enetaddr[j++] = value;
			dev->enetaddr[j++] = value >> 8;
		}
	}

	if (sum != 0xBABA) {
		memset (dev->enetaddr, 0, ETH_ALEN);
#ifdef DEBUG
		printf ("%s: Invalid EEPROM checksum %#4.4x, "
			"check settings before activating this device!\n",
			dev->name, sum);
#endif
	}
}