1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
|
// SPDX-License-Identifier: GPL-2.0+
/*
* ENETC ethernet controller driver
* Copyright 2017-2021 NXP
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdt_support.h>
#include <malloc.h>
#include <memalign.h>
#include <net.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <pci.h>
#include <miiphy.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include "fsl_enetc.h"
#define ENETC_DRIVER_NAME "enetc_eth"
static int enetc_remove(struct udevice *dev);
/*
* sets the MAC address in IERB registers, this setting is persistent and
* carried over to Linux.
*/
static void enetc_set_ierb_primary_mac(struct udevice *dev, int devfn,
const u8 *enetaddr)
{
#ifdef CONFIG_ARCH_LS1028A
/*
* LS1028A is the only part with IERB at this time and there are plans to change
* its structure, keep this LS1028A specific for now
*/
#define IERB_BASE 0x1f0800000ULL
#define IERB_PFMAC(pf, vf, n) (IERB_BASE + 0x8000 + (pf) * 0x100 + (vf) * 8 \
+ (n) * 4)
static int ierb_fn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
u16 lower = *(const u16 *)(enetaddr + 4);
u32 upper = *(const u32 *)enetaddr;
if (ierb_fn_to_pf[devfn] < 0)
return;
out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 0), upper);
out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 1), (u32)lower);
#endif
}
/* sets up primary MAC addresses in DT/IERB */
void fdt_fixup_enetc_mac(void *blob)
{
struct pci_child_plat *ppdata;
struct eth_pdata *pdata;
struct udevice *dev;
struct uclass *uc;
char path[256];
int offset;
int devfn;
uclass_get(UCLASS_ETH, &uc);
uclass_foreach_dev(dev, uc) {
if (!dev->driver || !dev->driver->name ||
strcmp(dev->driver->name, ENETC_DRIVER_NAME))
continue;
pdata = dev_get_plat(dev);
ppdata = dev_get_parent_plat(dev);
devfn = PCI_FUNC(ppdata->devfn);
enetc_set_ierb_primary_mac(dev, devfn, pdata->enetaddr);
snprintf(path, 256, "/soc/pcie@1f0000000/ethernet@%x,%x",
PCI_DEV(ppdata->devfn), PCI_FUNC(ppdata->devfn));
offset = fdt_path_offset(blob, path);
if (offset < 0)
continue;
fdt_setprop(blob, offset, "mac-address", pdata->enetaddr, 6);
}
}
/*
* Bind the device:
* - set a more explicit name on the interface
*/
static int enetc_bind(struct udevice *dev)
{
char name[16];
static int eth_num_devices;
/*
* prefer using PCI function numbers to number interfaces, but these
* are only available if dts nodes are present. For PCI they are
* optional, handle that case too. Just in case some nodes are present
* and some are not, use different naming scheme - enetc-N based on
* PCI function # and enetc#N based on interface count
*/
if (ofnode_valid(dev_ofnode(dev)))
sprintf(name, "enetc-%u", PCI_FUNC(pci_get_devfn(dev)));
else
sprintf(name, "enetc#%u", eth_num_devices++);
device_set_name(dev, name);
return 0;
}
/* MDIO wrappers, we're using these to drive internal MDIO to get to serdes */
static int enetc_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct enetc_mdio_priv priv;
priv.regs_base = bus->priv;
return enetc_mdio_read_priv(&priv, addr, devad, reg);
}
static int enetc_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
struct enetc_mdio_priv priv;
priv.regs_base = bus->priv;
return enetc_mdio_write_priv(&priv, addr, devad, reg, val);
}
/* only interfaces that can pin out through serdes have internal MDIO */
static bool enetc_has_imdio(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
return !!(priv->imdio.priv);
}
/* set up serdes for SGMII */
static int enetc_init_sgmii(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
bool is2500 = false;
u16 reg;
if (!enetc_has_imdio(dev))
return 0;
if (priv->uclass_id == PHY_INTERFACE_MODE_2500BASEX)
is2500 = true;
/*
* Set to SGMII mode, for 1Gbps enable AN, for 2.5Gbps set fixed speed.
* Although fixed speed is 1Gbps, we could be running at 2.5Gbps based
* on PLL configuration. Setting 1G for 2.5G here is counter intuitive
* but intentional.
*/
reg = ENETC_PCS_IF_MODE_SGMII;
reg |= is2500 ? ENETC_PCS_IF_MODE_SPEED_1G : ENETC_PCS_IF_MODE_SGMII_AN;
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_IF_MODE, reg);
/* Dev ability - SGMII */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SGMII);
/* Adjust link timer for SGMII */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_LINK_TIMER1, ENETC_PCS_LINK_TIMER1_VAL);
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_LINK_TIMER2, ENETC_PCS_LINK_TIMER2_VAL);
reg = ENETC_PCS_CR_DEF_VAL;
reg |= is2500 ? ENETC_PCS_CR_RST : ENETC_PCS_CR_RESET_AN;
/* restart PCS AN */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_CR, reg);
return 0;
}
/* set up MAC for RGMII */
static void enetc_init_rgmii(struct udevice *dev, struct phy_device *phydev)
{
struct enetc_priv *priv = dev_get_priv(dev);
u32 old_val, val;
old_val = val = enetc_read_port(priv, ENETC_PM_IF_MODE);
/* disable unreliable RGMII in-band signaling and force the MAC into
* the speed negotiated by the PHY.
*/
val &= ~ENETC_PM_IF_MODE_AN_ENA;
if (phydev->speed == SPEED_1000) {
val &= ~ENETC_PM_IFM_SSP_MASK;
val |= ENETC_PM_IFM_SSP_1000;
} else if (phydev->speed == SPEED_100) {
val &= ~ENETC_PM_IFM_SSP_MASK;
val |= ENETC_PM_IFM_SSP_100;
} else if (phydev->speed == SPEED_10) {
val &= ~ENETC_PM_IFM_SSP_MASK;
val |= ENETC_PM_IFM_SSP_10;
}
if (phydev->duplex == DUPLEX_FULL)
val |= ENETC_PM_IFM_FULL_DPX;
else
val &= ~ENETC_PM_IFM_FULL_DPX;
if (val == old_val)
return;
enetc_write_port(priv, ENETC_PM_IF_MODE, val);
}
/* set up MAC configuration for the given interface type */
static void enetc_setup_mac_iface(struct udevice *dev,
struct phy_device *phydev)
{
struct enetc_priv *priv = dev_get_priv(dev);
u32 if_mode;
switch (priv->uclass_id) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
enetc_init_rgmii(dev, phydev);
break;
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_10GBASER:
/* set ifmode to (US)XGMII */
if_mode = enetc_read_port(priv, ENETC_PM_IF_MODE);
if_mode &= ~ENETC_PM_IF_IFMODE_MASK;
enetc_write_port(priv, ENETC_PM_IF_MODE, if_mode);
break;
};
}
/* set up serdes for SXGMII */
static int enetc_init_sxgmii(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
if (!enetc_has_imdio(dev))
return 0;
/* Dev ability - SXGMII */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SXGMII);
/* Restart PCS AN */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
ENETC_PCS_CR,
ENETC_PCS_CR_RST | ENETC_PCS_CR_RESET_AN);
return 0;
}
/* Apply protocol specific configuration to MAC, serdes as needed */
static void enetc_start_pcs(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
/* register internal MDIO for debug purposes */
if (enetc_read_port(priv, ENETC_PCAPR0) & ENETC_PCAPRO_MDIO) {
priv->imdio.read = enetc_mdio_read;
priv->imdio.write = enetc_mdio_write;
priv->imdio.priv = priv->port_regs + ENETC_PM_IMDIO_BASE;
strlcpy(priv->imdio.name, dev->name, MDIO_NAME_LEN);
if (!miiphy_get_dev_by_name(priv->imdio.name))
mdio_register(&priv->imdio);
}
if (!ofnode_valid(dev_ofnode(dev))) {
enetc_dbg(dev, "no enetc ofnode found, skipping PCS set-up\n");
return;
}
priv->uclass_id = dev_read_phy_mode(dev);
if (priv->uclass_id == PHY_INTERFACE_MODE_NA) {
enetc_dbg(dev,
"phy-mode property not found, defaulting to SGMII\n");
priv->uclass_id = PHY_INTERFACE_MODE_SGMII;
}
switch (priv->uclass_id) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_2500BASEX:
enetc_init_sgmii(dev);
break;
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_10GBASER:
enetc_init_sxgmii(dev);
break;
};
}
/* Configure the actual/external ethernet PHY, if one is found */
static int enetc_config_phy(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
int supported;
priv->phy = dm_eth_phy_connect(dev);
if (!priv->phy)
return -ENODEV;
supported = PHY_GBIT_FEATURES | SUPPORTED_2500baseX_Full;
priv->phy->supported &= supported;
priv->phy->advertising &= supported;
return phy_config(priv->phy);
}
/*
* Probe ENETC driver:
* - initialize port and station interface BARs
*/
static int enetc_probe(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
int res;
if (ofnode_valid(dev_ofnode(dev)) && !ofnode_is_enabled(dev_ofnode(dev))) {
enetc_dbg(dev, "interface disabled\n");
return -ENODEV;
}
priv->enetc_txbd = memalign(ENETC_BD_ALIGN,
sizeof(struct enetc_tx_bd) * ENETC_BD_CNT);
priv->enetc_rxbd = memalign(ENETC_BD_ALIGN,
sizeof(union enetc_rx_bd) * ENETC_BD_CNT);
if (!priv->enetc_txbd || !priv->enetc_rxbd) {
/* free should be able to handle NULL, just free all pointers */
free(priv->enetc_txbd);
free(priv->enetc_rxbd);
return -ENOMEM;
}
/* initialize register */
priv->regs_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0, PCI_REGION_TYPE, 0);
if (!priv->regs_base) {
enetc_dbg(dev, "failed to map BAR0\n");
return -EINVAL;
}
priv->port_regs = priv->regs_base + ENETC_PORT_REGS_OFF;
dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
enetc_start_pcs(dev);
res = enetc_config_phy(dev);
if(res)
enetc_remove(dev);
return res;
}
/*
* Remove the driver from an interface:
* - free up allocated memory
*/
static int enetc_remove(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
if (miiphy_get_dev_by_name(priv->imdio.name))
mdio_unregister(&priv->imdio);
free(priv->enetc_txbd);
free(priv->enetc_rxbd);
return 0;
}
/*
* LS1028A is the only part with IERB at this time and there are plans to
* change its structure, keep this LS1028A specific for now.
*/
#define LS1028A_IERB_BASE 0x1f0800000ULL
#define LS1028A_IERB_PSIPMAR0(pf, vf) (LS1028A_IERB_BASE + 0x8000 \
+ (pf) * 0x100 + (vf) * 8)
#define LS1028A_IERB_PSIPMAR1(pf, vf) (LS1028A_IERB_PSIPMAR0(pf, vf) + 4)
static int enetc_ls1028a_write_hwaddr(struct udevice *dev)
{
struct pci_child_plat *ppdata = dev_get_parent_plat(dev);
const int devfn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
struct eth_pdata *plat = dev_get_plat(dev);
int devfn = PCI_FUNC(ppdata->devfn);
u8 *addr = plat->enetaddr;
u32 lower, upper;
int pf;
if (devfn >= ARRAY_SIZE(devfn_to_pf))
return 0;
pf = devfn_to_pf[devfn];
if (pf < 0)
return 0;
lower = *(const u16 *)(addr + 4);
upper = *(const u32 *)addr;
out_le32(LS1028A_IERB_PSIPMAR0(pf, 0), upper);
out_le32(LS1028A_IERB_PSIPMAR1(pf, 0), lower);
return 0;
}
static int enetc_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_plat(dev);
struct enetc_priv *priv = dev_get_priv(dev);
u8 *addr = plat->enetaddr;
if (IS_ENABLED(CONFIG_ARCH_LS1028A))
return enetc_ls1028a_write_hwaddr(dev);
u16 lower = *(const u16 *)(addr + 4);
u32 upper = *(const u32 *)addr;
enetc_write_port(priv, ENETC_PSIPMAR0, upper);
enetc_write_port(priv, ENETC_PSIPMAR1, lower);
return 0;
}
/* Configure port parameters (# of rings, frame size, enable port) */
static void enetc_enable_si_port(struct enetc_priv *priv)
{
u32 val;
/* set Rx/Tx BDR count */
val = ENETC_PSICFGR_SET_TXBDR(ENETC_TX_BDR_CNT);
val |= ENETC_PSICFGR_SET_RXBDR(ENETC_RX_BDR_CNT);
enetc_write_port(priv, ENETC_PSICFGR(0), val);
/* set Rx max frame size */
enetc_write_port(priv, ENETC_PM_MAXFRM, ENETC_RX_MAXFRM_SIZE);
/* enable MAC port */
enetc_write_port(priv, ENETC_PM_CC, ENETC_PM_CC_RX_TX_EN);
/* enable port */
enetc_write_port(priv, ENETC_PMR, ENETC_PMR_SI0_EN);
/* set SI cache policy */
enetc_write(priv, ENETC_SICAR0,
ENETC_SICAR_RD_CFG | ENETC_SICAR_WR_CFG);
/* enable SI */
enetc_write(priv, ENETC_SIMR, ENETC_SIMR_EN);
}
/* returns DMA address for a given buffer index */
static inline u64 enetc_rxb_address(struct udevice *dev, int i)
{
return cpu_to_le64(dm_pci_virt_to_mem(dev, net_rx_packets[i]));
}
/*
* Setup a single Tx BD Ring (ID = 0):
* - set Tx buffer descriptor address
* - set the BD count
* - initialize the producer and consumer index
*/
static void enetc_setup_tx_bdr(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *tx_bdr = &priv->tx_bdr;
u64 tx_bd_add = (u64)priv->enetc_txbd;
/* used later to advance to the next Tx BD */
tx_bdr->bd_count = ENETC_BD_CNT;
tx_bdr->next_prod_idx = 0;
tx_bdr->next_cons_idx = 0;
tx_bdr->cons_idx = priv->regs_base +
ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBCIR);
tx_bdr->prod_idx = priv->regs_base +
ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBPIR);
/* set Tx BD address */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR0,
lower_32_bits(tx_bd_add));
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR1,
upper_32_bits(tx_bd_add));
/* set Tx 8 BD count */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBLENR,
tx_bdr->bd_count);
/* reset both producer/consumer indexes */
enetc_write_reg(tx_bdr->cons_idx, tx_bdr->next_cons_idx);
enetc_write_reg(tx_bdr->prod_idx, tx_bdr->next_prod_idx);
/* enable TX ring */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBMR, ENETC_TBMR_EN);
}
/*
* Setup a single Rx BD Ring (ID = 0):
* - set Rx buffer descriptors address (one descriptor per buffer)
* - set buffer size as max frame size
* - enable Rx ring
* - reset consumer and producer indexes
* - set buffer for each descriptor
*/
static void enetc_setup_rx_bdr(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *rx_bdr = &priv->rx_bdr;
u64 rx_bd_add = (u64)priv->enetc_rxbd;
int i;
/* used later to advance to the next BD produced by ENETC HW */
rx_bdr->bd_count = ENETC_BD_CNT;
rx_bdr->next_prod_idx = 0;
rx_bdr->next_cons_idx = 0;
rx_bdr->cons_idx = priv->regs_base +
ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBCIR);
rx_bdr->prod_idx = priv->regs_base +
ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBPIR);
/* set Rx BD address */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR0,
lower_32_bits(rx_bd_add));
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR1,
upper_32_bits(rx_bd_add));
/* set Rx BD count (multiple of 8) */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBLENR,
rx_bdr->bd_count);
/* set Rx buffer size */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBSR, PKTSIZE_ALIGN);
/* fill Rx BD */
memset(priv->enetc_rxbd, 0,
rx_bdr->bd_count * sizeof(union enetc_rx_bd));
for (i = 0; i < rx_bdr->bd_count; i++) {
priv->enetc_rxbd[i].w.addr = enetc_rxb_address(dev, i);
/* each RX buffer must be aligned to 64B */
WARN_ON(priv->enetc_rxbd[i].w.addr & (ARCH_DMA_MINALIGN - 1));
}
/* reset producer (ENETC owned) and consumer (SW owned) index */
enetc_write_reg(rx_bdr->cons_idx, rx_bdr->next_cons_idx);
enetc_write_reg(rx_bdr->prod_idx, rx_bdr->next_prod_idx);
/* enable Rx ring */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBMR, ENETC_RBMR_EN);
}
/*
* Start ENETC interface:
* - perform FLR
* - enable access to port and SI registers
* - set mac address
* - setup TX/RX buffer descriptors
* - enable Tx/Rx rings
*/
static int enetc_start(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
/* reset and enable the PCI device */
dm_pci_flr(dev);
dm_pci_clrset_config16(dev, PCI_COMMAND, 0,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
enetc_enable_si_port(priv);
/* setup Tx/Rx buffer descriptors */
enetc_setup_tx_bdr(dev);
enetc_setup_rx_bdr(dev);
enetc_setup_mac_iface(dev, priv->phy);
return phy_startup(priv->phy);
}
/*
* Stop the network interface:
* - just quiesce it, we can wipe all configuration as _start starts from
* scratch each time
*/
static void enetc_stop(struct udevice *dev)
{
/* FLR is sufficient to quiesce the device */
dm_pci_flr(dev);
/* leave the BARs accessible after we stop, this is needed to use
* internal MDIO in command line.
*/
dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
}
/*
* ENETC transmit packet:
* - check if Tx BD ring is full
* - set buffer/packet address (dma address)
* - set final fragment flag
* - try while producer index equals consumer index or timeout
*/
static int enetc_send(struct udevice *dev, void *packet, int length)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *txr = &priv->tx_bdr;
void *nv_packet = (void *)packet;
int tries = ENETC_POLL_TRIES;
u32 pi, ci;
pi = txr->next_prod_idx;
ci = enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK;
/* Tx ring is full when */
if (((pi + 1) % txr->bd_count) == ci) {
enetc_dbg(dev, "Tx BDR full\n");
return -ETIMEDOUT;
}
enetc_dbg(dev, "TxBD[%d]send: pkt_len=%d, buff @0x%x%08x\n", pi, length,
upper_32_bits((u64)nv_packet), lower_32_bits((u64)nv_packet));
/* prepare Tx BD */
memset(&priv->enetc_txbd[pi], 0x0, sizeof(struct enetc_tx_bd));
priv->enetc_txbd[pi].addr =
cpu_to_le64(dm_pci_virt_to_mem(dev, nv_packet));
priv->enetc_txbd[pi].buf_len = cpu_to_le16(length);
priv->enetc_txbd[pi].frm_len = cpu_to_le16(length);
priv->enetc_txbd[pi].flags = cpu_to_le16(ENETC_TXBD_FLAGS_F);
dmb();
/* send frame: increment producer index */
pi = (pi + 1) % txr->bd_count;
txr->next_prod_idx = pi;
enetc_write_reg(txr->prod_idx, pi);
while ((--tries >= 0) &&
(pi != (enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK)))
udelay(10);
return tries > 0 ? 0 : -ETIMEDOUT;
}
/*
* Receive frame:
* - wait for the next BD to get ready bit set
* - clean up the descriptor
* - move on and indicate to HW that the cleaned BD is available for Rx
*/
static int enetc_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *rxr = &priv->rx_bdr;
int tries = ENETC_POLL_TRIES;
int pi = rxr->next_prod_idx;
int ci = rxr->next_cons_idx;
u32 status;
int len;
u8 rdy;
do {
dmb();
status = le32_to_cpu(priv->enetc_rxbd[pi].r.lstatus);
/* check if current BD is ready to be consumed */
rdy = ENETC_RXBD_STATUS_R(status);
} while (--tries >= 0 && !rdy);
if (!rdy)
return -EAGAIN;
dmb();
len = le16_to_cpu(priv->enetc_rxbd[pi].r.buf_len);
*packetp = (uchar *)enetc_rxb_address(dev, pi);
enetc_dbg(dev, "RxBD[%d]: len=%d err=%d pkt=0x%x%08x\n", pi, len,
ENETC_RXBD_STATUS_ERRORS(status),
upper_32_bits((u64)*packetp), lower_32_bits((u64)*packetp));
/* BD clean up and advance to next in ring */
memset(&priv->enetc_rxbd[pi], 0, sizeof(union enetc_rx_bd));
priv->enetc_rxbd[pi].w.addr = enetc_rxb_address(dev, pi);
rxr->next_prod_idx = (pi + 1) % rxr->bd_count;
ci = (ci + 1) % rxr->bd_count;
rxr->next_cons_idx = ci;
dmb();
/* free up the slot in the ring for HW */
enetc_write_reg(rxr->cons_idx, ci);
return len;
}
static const struct eth_ops enetc_ops = {
.start = enetc_start,
.send = enetc_send,
.recv = enetc_recv,
.stop = enetc_stop,
.write_hwaddr = enetc_write_hwaddr,
};
U_BOOT_DRIVER(eth_enetc) = {
.name = ENETC_DRIVER_NAME,
.id = UCLASS_ETH,
.bind = enetc_bind,
.probe = enetc_probe,
.remove = enetc_remove,
.ops = &enetc_ops,
.priv_auto = sizeof(struct enetc_priv),
.plat_auto = sizeof(struct eth_pdata),
};
static struct pci_device_id enetc_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_ENETC_ETH) },
{}
};
U_BOOT_PCI_DEVICE(eth_enetc, enetc_ids);
|