1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
// SPDX-License-Identifier: BSD-2-Clause
/*
* Cadence DDR Controller
*
* Copyright (C) 2015 Renesas Electronics Europe Ltd
*/
/*
* The Cadence DDR Controller has a huge number of registers that principally
* cover two aspects, DDR specific timing information and AXI bus interfacing.
* Cadence's TCL script generates all of the register values for specific
* DDR devices operating at a specific frequency. The TCL script uses Denali
* SOMA files as inputs. The tool also generates the AXI bus register values as
* well, however this driver assumes that users will want to modifiy these to
* meet a specific application's needs.
* Therefore, this driver is passed two arrays containing register values for
* the DDR device specific information, and explicity sets the AXI registers.
*
* AXI bus interfacing:
* The controller has four AXI slaves connections, and each of these can be
* programmed to accept requests from specific AXI masters (using their IDs).
* The regions of DDR that can be accessed by each AXI slave can be set such
* as to isolate DDR used by one AXI master from another. Further, the maximum
* bandwidth allocated to each AXI slave can be set.
*/
#include <common.h>
#include <linux/delay.h>
#include <linux/sizes.h>
#include <asm/io.h>
#include <wait_bit.h>
#include <renesas/ddr_ctrl.h>
/* avoid warning for real pr_debug in <linux/printk.h> */
#ifdef pr_debug
#undef pr_debug
#endif
#ifdef DEBUG
#define pr_debug(fmt, args...) printf(fmt, ##args)
#define pr_debug2(fmt, args...) printf(fmt, ##args)
#else
#define pr_debug(fmt, args...)
#define pr_debug2(fmt, args...)
#endif
#define DDR_NR_AXI_PORTS 4
#define DDR_NR_ENTRIES 16
#define DDR_START_REG (0) /* DENALI_CTL_00 */
#define DDR_CS0_MR1_REG (32 * 4) /* DENALI_CTL_32 */
#define DDR_CS0_MR2_REG (32 * 4 + 2) /* DENALI_CTL_32 */
#define DDR_CS1_MR1_REG (34 * 4 + 2) /* DENALI_CTL_34 */
#define DDR_CS1_MR2_REG (35 * 4) /* DENALI_CTL_35 */
#define DDR_ECC_ENABLE_REG (36 * 4 + 2) /* DENALI_CTL_36 */
#define DDR_ECC_DISABLE_W_UC_ERR_REG (37 * 4 + 2) /* DENALI_CTL_37 */
#define DDR_HALF_DATAPATH_REG (54 * 4) /* DENALI_CTL_54 */
#define DDR_INTERRUPT_STATUS (56 * 4) /* DENALI_CTL_56 */
#define DDR_INTERRUPT_ACK (57 * 4) /* DENALI_CTL_57 */
#define DDR_INTERRUPT_MASK (58 * 4) /* DENALI_CTL_58 */
#define DDR_CS0_ODT_MAP_REG (62 * 4 + 2) /* DENALI_CTL_62 */
#define DDR_CS1_ODT_MAP_REG (63 * 4) /* DENALI_CTL_63 */
#define DDR_ODT_TODTL_2CMD (63 * 4 + 2) /* DENALI_CTL_63 */
#define DDR_ODT_TODTH_WR (63 * 4 + 3) /* DENALI_CTL_63 */
#define DDR_ODT_TODTH_RD (64 * 4 + 0) /* DENALI_CTL_64 */
#define DDR_ODT_EN (64 * 4 + 1) /* DENALI_CTL_64 */
#define DDR_ODT_WR_TO_ODTH (64 * 4 + 2) /* DENALI_CTL_64 */
#define DDR_ODT_RD_TO_ODTH (64 * 4 + 3) /* DENALI_CTL_64 */
#define DDR_DIFF_CS_DELAY_REG (66 * 4) /* DENALI_CTL_66 */
#define DDR_SAME_CS_DELAY_REG (67 * 4) /* DENALI_CTL_67 */
#define DDR_RW_PRIORITY_REGS (87 * 4 + 2) /* DENALI_CTL_87 */
#define DDR_RW_FIFO_TYPE_REGS (88 * 4) /* DENALI_CTL_88 */
#define DDR_AXI_PORT_PROT_ENABLE_REG (90 * 4 + 3) /* DENALI_CTL_90 */
#define DDR_ADDR_RANGE_REGS (91 * 4) /* DENALI_CTL_91 */
#define DDR_RANGE_PROT_REGS (218 * 4 + 2) /* DENALI_CTL_218 */
#define DDR_ARB_CMD_Q_THRESHOLD_REG (346 * 4 + 2) /* DENALI_CTL_346 */
#define DDR_AXI_PORT_BANDWIDTH_REG (346 * 4 + 3) /* DENALI_CTL_346 */
#define DDR_OPT_RMODW_REG (372 * 4 + 3) /* DENALI_CTL_372 */
static void ddrc_writeb(u8 val, void *p)
{
pr_debug2("DDR: %p = 0x%02x\n", p, val);
writeb(val, p);
}
static void ddrc_writew(u16 val, void *p)
{
pr_debug2("DDR: %p = 0x%04x\n", p, val);
writew(val, p);
}
static void ddrc_writel(u32 val, void *p)
{
pr_debug2("DDR: %p = 0x%08x\n", p, val);
writel(val, p);
}
void cdns_ddr_set_mr1(void *base, int cs, u16 odt_impedance, u16 drive_strength)
{
void *reg;
u16 tmp;
if (cs == 0)
reg = (u8 *)base + DDR_CS0_MR1_REG;
else
reg = (u8 *)base + DDR_CS1_MR1_REG;
tmp = readw(reg);
tmp &= ~MODE_REGISTER_MASK;
tmp |= MODE_REGISTER_MR1;
tmp &= ~MR1_ODT_IMPEDANCE_MASK;
tmp |= odt_impedance;
tmp &= ~MR1_DRIVE_STRENGTH_MASK;
tmp |= drive_strength;
writew(tmp, reg);
}
void cdns_ddr_set_mr2(void *base, int cs, u16 dynamic_odt, u16 self_refresh_temp)
{
void *reg;
u16 tmp;
if (cs == 0)
reg = (u8 *)base + DDR_CS0_MR2_REG;
else
reg = (u8 *)base + DDR_CS1_MR2_REG;
tmp = readw(reg);
tmp &= ~MODE_REGISTER_MASK;
tmp |= MODE_REGISTER_MR2;
tmp &= ~MR2_DYNAMIC_ODT_MASK;
tmp |= dynamic_odt;
tmp &= ~MR2_SELF_REFRESH_TEMP_MASK;
tmp |= self_refresh_temp;
writew(tmp, reg);
}
void cdns_ddr_set_odt_map(void *base, int cs, u16 odt_map)
{
void *reg;
if (cs == 0)
reg = (u8 *)base + DDR_CS0_ODT_MAP_REG;
else
reg = (u8 *)base + DDR_CS1_ODT_MAP_REG;
writew(odt_map, reg);
}
void cdns_ddr_set_odt_times(void *base, u8 TODTL_2CMD, u8 TODTH_WR, u8 TODTH_RD,
u8 WR_TO_ODTH, u8 RD_TO_ODTH)
{
writeb(TODTL_2CMD, (u8 *)base + DDR_ODT_TODTL_2CMD);
writeb(TODTH_WR, (u8 *)base + DDR_ODT_TODTH_WR);
writeb(TODTH_RD, (u8 *)base + DDR_ODT_TODTH_RD);
writeb(1, (u8 *)base + DDR_ODT_EN);
writeb(WR_TO_ODTH, (u8 *)base + DDR_ODT_WR_TO_ODTH);
writeb(RD_TO_ODTH, (u8 *)base + DDR_ODT_RD_TO_ODTH);
}
void cdns_ddr_set_same_cs_delays(void *base, u8 r2r, u8 r2w, u8 w2r, u8 w2w)
{
u32 val = (w2w << 24) | (w2r << 16) | (r2w << 8) | r2r;
writel(val, (u8 *)base + DDR_SAME_CS_DELAY_REG);
}
void cdns_ddr_set_diff_cs_delays(void *base, u8 r2r, u8 r2w, u8 w2r, u8 w2w)
{
u32 val = (w2w << 24) | (w2r << 16) | (r2w << 8) | r2r;
writel(val, (u8 *)base + DDR_DIFF_CS_DELAY_REG);
}
void cdns_ddr_set_port_rw_priority(void *base, int port,
u8 read_pri, u8 write_pri)
{
u8 *reg8 = (u8 *)base + DDR_RW_PRIORITY_REGS;
reg8 += (port * 3);
pr_debug("%s port %d (reg8=%p, DENALI_CTL_%d)\n",
__func__, port, reg8, (reg8 - (u8 *)base) / 4);
ddrc_writeb(read_pri, reg8++);
ddrc_writeb(write_pri, reg8++);
}
/* The DDR Controller has 16 entries. Each entry can specify an allowed address
* range (with 16KB resolution) for one of the 4 AXI slave ports.
*/
void cdns_ddr_enable_port_addr_range(void *base, int port, int entry,
u32 addr_start, u32 size)
{
u32 addr_end;
u32 *reg32 = (u32 *)((u8 *)base + DDR_ADDR_RANGE_REGS);
u32 tmp;
reg32 += (port * DDR_NR_ENTRIES * 2);
reg32 += (entry * 2);
pr_debug("%s port %d, entry %d (reg32=%p, DENALI_CTL_%d)\n",
__func__, port, entry, reg32, ((u8 *)reg32 - (u8 *)base) / 4);
/* These registers represent 16KB address blocks */
addr_start /= SZ_16K;
size /= SZ_16K;
if (size)
addr_end = addr_start + size - 1;
else
addr_end = addr_start;
ddrc_writel(addr_start, reg32++);
/*
* end_addr: Ensure we only set the bottom 18-bits as DENALI_CTL_218
* also contains the AXI0 range protection bits.
*/
tmp = readl(reg32);
tmp &= ~(BIT(18) - 1);
tmp |= addr_end;
ddrc_writel(tmp, reg32);
}
void cdns_ddr_enable_addr_range(void *base, int entry,
u32 addr_start, u32 size)
{
int axi;
for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++)
cdns_ddr_enable_port_addr_range(base, axi, entry,
addr_start, size);
}
void cdns_ddr_enable_port_prot(void *base, int port, int entry,
enum cdns_ddr_range_prot range_protection_bits,
u16 range_RID_check_bits,
u16 range_WID_check_bits,
u8 range_RID_check_bits_ID_lookup,
u8 range_WID_check_bits_ID_lookup)
{
/*
* Technically, the offset here points to the byte before the start of
* the range protection registers. However, all entries consist of 8
* bytes, except the first one (which is missing a padding byte) so we
* work around that subtlely.
*/
u8 *reg8 = (u8 *)base + DDR_RANGE_PROT_REGS;
reg8 += (port * DDR_NR_ENTRIES * 8);
reg8 += (entry * 8);
pr_debug("%s port %d, entry %d (reg8=%p, DENALI_CTL_%d)\n",
__func__, port, entry, reg8, (reg8 - (u8 *)base) / 4);
if (port == 0 && entry == 0)
ddrc_writeb(range_protection_bits, reg8 + 1);
else
ddrc_writeb(range_protection_bits, reg8);
ddrc_writew(range_RID_check_bits, reg8 + 2);
ddrc_writew(range_WID_check_bits, reg8 + 4);
ddrc_writeb(range_RID_check_bits_ID_lookup, reg8 + 6);
ddrc_writeb(range_WID_check_bits_ID_lookup, reg8 + 7);
}
void cdns_ddr_enable_prot(void *base, int entry,
enum cdns_ddr_range_prot range_protection_bits,
u16 range_RID_check_bits,
u16 range_WID_check_bits,
u8 range_RID_check_bits_ID_lookup,
u8 range_WID_check_bits_ID_lookup)
{
int axi;
for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++)
cdns_ddr_enable_port_prot(base, axi, entry,
range_protection_bits,
range_RID_check_bits,
range_WID_check_bits,
range_RID_check_bits_ID_lookup,
range_WID_check_bits_ID_lookup);
}
void cdns_ddr_set_port_bandwidth(void *base, int port,
u8 max_percent, u8 overflow_ok)
{
u8 *reg8 = (u8 *)base + DDR_AXI_PORT_BANDWIDTH_REG;
reg8 += (port * 3);
pr_debug("%s port %d, (reg8=%p, DENALI_CTL_%d)\n",
__func__, port, reg8, (reg8 - (u8 *)base) / 4);
ddrc_writeb(max_percent, reg8++); /* Maximum bandwidth percentage */
ddrc_writeb(overflow_ok, reg8++); /* Bandwidth overflow allowed */
}
void cdns_ddr_ctrl_init(void *ddr_ctrl_basex, int async,
const u32 *reg0, const u32 *reg350,
u32 ddr_start_addr, u32 ddr_size,
int enable_ecc, int enable_8bit)
{
int i, axi, entry;
u32 *ddr_ctrl_base = (u32 *)ddr_ctrl_basex;
u8 *base8 = (u8 *)ddr_ctrl_basex;
ddrc_writel(*reg0, ddr_ctrl_base + 0);
/* 1 to 6 are read only */
for (i = 7; i <= 26; i++)
ddrc_writel(*(reg0 + i), ddr_ctrl_base + i);
/* 27 to 29 are not changed */
for (i = 30; i <= 87; i++)
ddrc_writel(*(reg0 + i), ddr_ctrl_base + i);
/* Enable/disable ECC */
if (enable_ecc) {
pr_debug("%s enabling ECC\n", __func__);
ddrc_writeb(1, base8 + DDR_ECC_ENABLE_REG);
} else {
ddrc_writeb(0, base8 + DDR_ECC_ENABLE_REG);
}
/* ECC: Disable corruption for read/modify/write operations */
ddrc_writeb(1, base8 + DDR_ECC_DISABLE_W_UC_ERR_REG);
/* Set 8/16-bit data width using reduce bit (enable half datapath)*/
if (enable_8bit) {
pr_debug("%s using 8-bit data\n", __func__);
ddrc_writeb(1, base8 + DDR_HALF_DATAPATH_REG);
} else {
ddrc_writeb(0, base8 + DDR_HALF_DATAPATH_REG);
}
/* Threshold for command queue */
ddrc_writeb(4, base8 + DDR_ARB_CMD_Q_THRESHOLD_REG);
/* AXI port protection => enable */
ddrc_writeb(0x01, base8 + DDR_AXI_PORT_PROT_ENABLE_REG);
/* Set port interface type, default port priority and bandwidths */
for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++) {
/* port interface type: synchronous or asynchronous AXI clock */
u8 *fifo_reg = base8 + DDR_RW_FIFO_TYPE_REGS + (axi * 3);
if (async)
ddrc_writeb(0, fifo_reg);
else
ddrc_writeb(3, fifo_reg);
/* R/W priorities */
cdns_ddr_set_port_rw_priority(ddr_ctrl_base, axi, 2, 2);
/* AXI bandwidth */
cdns_ddr_set_port_bandwidth(ddr_ctrl_base, axi, 50, 1);
}
/*
* The hardware requires that the valid address ranges must not overlap.
* So, we initialise all address ranges to be above the DDR, length 0.
*/
for (entry = 0; entry < DDR_NR_ENTRIES; entry++)
cdns_ddr_enable_addr_range(ddr_ctrl_base, entry,
ddr_start_addr + ddr_size, 0);
for (i = 350; i <= 374; i++)
ddrc_writel(*(reg350 - 350 + i), ddr_ctrl_base + i);
/* Disable optimised read-modify-write logic */
ddrc_writeb(0, base8 + DDR_OPT_RMODW_REG);
/*
* Disable all interrupts, we are not handling them.
* For detail of the interrupt mask, ack and status bits, see the
* manual's description of the 'int_status' parameter.
*/
ddrc_writel(0, base8 + DDR_INTERRUPT_MASK);
/*
* Default settings to enable full access to the entire DDR.
* Users can set different ranges and access rights by calling these
* functions before calling cdns_ddr_ctrl_start().
*/
cdns_ddr_enable_addr_range(ddr_ctrl_base, 0,
ddr_start_addr, ddr_size);
cdns_ddr_enable_prot(ddr_ctrl_base, 0, CDNS_DDR_RANGE_PROT_BITS_FULL,
0xffff, 0xffff, 0x0f, 0x0f);
}
void cdns_ddr_ctrl_start(void *ddr_ctrl_basex)
{
u32 *ddr_ctrl_base = (u32 *)ddr_ctrl_basex;
u8 *base8 = (u8 *)ddr_ctrl_basex;
/* Start */
ddrc_writeb(1, base8 + DDR_START_REG);
/* Wait for controller to be ready (interrupt status) */
wait_for_bit_le32(base8 + DDR_INTERRUPT_STATUS, 0x100, true, 1000, false);
/* clear all interrupts */
ddrc_writel(~0, base8 + DDR_INTERRUPT_ACK);
/* Step 19 Wait 500us from MRESETB=1 */
udelay(500);
/* Step 20 tCKSRX wait (From supply stable clock for MCK) */
/* DENALI_CTL_19 TREF_ENABLE=0x1(=1), AREFRESH=0x1(=1) */
ddrc_writel(0x01000100, ddr_ctrl_base + 19);
}
|