aboutsummaryrefslogtreecommitdiff
path: root/drivers/ram/k3-ddrss/lpddr4_32bit.c
blob: ab2e44891d9edeb30fa68f4c38fab9bb1dee8591 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// SPDX-License-Identifier: BSD-3-Clause
/*
 * Cadence DDR Driver
 *
 * Copyright (C) 2012-2021 Cadence Design Systems, Inc.
 * Copyright (C) 2018-2021 Texas Instruments Incorporated - https://www.ti.com/
 */

#include <errno.h>

#include "cps_drv_lpddr4.h"
#include "lpddr4_ctl_regs.h"
#include "lpddr4_if.h"
#include "lpddr4.h"
#include "lpddr4_structs_if.h"

static void lpddr4_setrxoffseterror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errorfound);

u32 lpddr4_enablepiinitiator(const lpddr4_privatedata *pd)
{
	u32 result = 0U;
	u32 regval = 0U;

	lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;

	regval = CPS_FLD_SET(LPDDR4__PI_INIT_LVL_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)));
	regval = CPS_FLD_SET(LPDDR4__PI_NORMAL_LVL_SEQ__FLD, regval);
	CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)), regval);
	return result;
}

u32 lpddr4_getctlinterruptmask(const lpddr4_privatedata *pd, u64 *mask)
{
	u32 result = 0U;
	u32 lowermask = 0U;

	result = lpddr4_getctlinterruptmasksf(pd, mask);
	if (result == (u32)0) {
		lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
		lowermask = (u32)(CPS_FLD_READ(LPDDR4__INT_MASK_0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_0__REG))));
		*mask = (u64)(CPS_FLD_READ(LPDDR4__INT_MASK_1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_1__REG))));
		*mask = (u64)((*mask << WORD_SHIFT) | lowermask);
	}
	return result;
}

u32 lpddr4_setctlinterruptmask(const lpddr4_privatedata *pd, const u64 *mask)
{
	u32 result;
	u32 regval = 0;
	const u64 ui64one = 1ULL;
	const u32 ui32irqcount = (u32)LPDDR4_INTR_LOR_BITS + 1U;

	result = lpddr4_setctlinterruptmasksf(pd, mask);
	if ((result == (u32)0) && (ui32irqcount < 64U)) {
		if (*mask >= (ui64one << ui32irqcount))
			result = (u32)EINVAL;
	}

	if (result == (u32)0) {
		lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;

		regval = (u32)(*mask & WORD_MASK);
		regval = CPS_FLD_WRITE(LPDDR4__INT_MASK_0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_0__REG)), regval);
		CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_0__REG), regval);

		regval = (u32)((*mask >> WORD_SHIFT) & WORD_MASK);
		regval = CPS_FLD_WRITE(LPDDR4__INT_MASK_1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_1__REG)), regval);
		CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_1__REG), regval);
	}
	return result;
}

u32 lpddr4_checkctlinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt intr, bool *irqstatus)
{
	u32 result;
	u32 ctlirqstatus = 0;
	u32 fieldshift = 0;

	result = LPDDR4_INTR_CheckCtlIntSF(pd, intr, irqstatus);
	if (result == (u32)0) {
		lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;

		if ((u32)intr >= (u32)WORD_SHIFT) {
			ctlirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_1__REG));
			fieldshift = (u32)intr - ((u32)WORD_SHIFT);
		} else {
			ctlirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_0__REG));
			fieldshift = (u32)intr;
		}

		if (fieldshift < WORD_SHIFT) {
			if (((ctlirqstatus >> fieldshift) & LPDDR4_BIT_MASK) > 0U)
				*irqstatus = true;
			else
				*irqstatus = false;
		}
	}
	return result;
}

u32 lpddr4_ackctlinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt intr)
{
	u32 result = 0;
	u32 regval = 0;
	u32 localinterrupt = (u32)intr;

	result = LPDDR4_INTR_AckCtlIntSF(pd, intr);
	if (result == (u32)0) {
		lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;

		if (localinterrupt > WORD_SHIFT) {
			localinterrupt = (localinterrupt - (u32)WORD_SHIFT);
			regval = ((u32)LPDDR4_BIT_MASK << localinterrupt);
			CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_1__REG), regval);
		} else {
			regval = ((u32)LPDDR4_BIT_MASK << localinterrupt);
			CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_0__REG), regval);
		}
	}

	return result;
}

void lpddr4_checkwrlvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr)
{
	u32 regval;
	u32 errbitmask = 0U;
	u32 snum;
	volatile u32 *regaddress;

	regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_WRLVL_ERROR_OBS_0__REG));
	errbitmask = (LPDDR4_BIT_MASK << 1) | (LPDDR4_BIT_MASK);
	for (snum = 0U; snum < DSLICE_NUM; snum++) {
		regval = CPS_REG_READ(regaddress);
		if ((regval & errbitmask) != 0U) {
			debuginfo->wrlvlerror = CDN_TRUE;
			*errfoundptr = true;
		}
		regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
	}
}

static void lpddr4_setrxoffseterror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errorfound)
{
	volatile u32 *regaddress;
	u32 snum = 0U;
	u32 errbitmask = 0U;
	u32 regval = 0U;

	if (*errorfound == (bool)false) {
		regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_RX_CAL_LOCK_OBS_0__REG));
		errbitmask = (RX_CAL_DONE) | (NIBBLE_MASK);
		for (snum = (u32)0U; snum < DSLICE_NUM; snum++) {
			regval = CPS_FLD_READ(LPDDR4__PHY_RX_CAL_LOCK_OBS_0__FLD, CPS_REG_READ(regaddress));
			if ((regval & errbitmask) != RX_CAL_DONE) {
				debuginfo->rxoffseterror = (u8)true;
				*errorfound = true;
			}
			regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
		}
	}
}

u32 lpddr4_getdebuginitinfo(const lpddr4_privatedata *pd, lpddr4_debuginfo *debuginfo)
{
	u32 result = 0U;
	bool errorfound = false;

	result = lpddr4_getdebuginitinfosf(pd, debuginfo);
	if (result == (u32)0) {
		lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
		lpddr4_seterrors(ctlregbase, debuginfo, (u8 *)&errorfound);
		lpddr4_setsettings(ctlregbase, errorfound);
		lpddr4_setrxoffseterror(ctlregbase, debuginfo, &errorfound);
		errorfound = (bool)lpddr4_checklvlerrors(pd, debuginfo, errorfound);
	}

	if (errorfound == (bool)true)
		result = (u32)EPROTO;

	return result;
}

u32 lpddr4_geteccenable(const lpddr4_privatedata *pd, lpddr4_eccenable *eccparam)
{
	u32 result = 0U;
	u32 fldval = 0U;

	result = lpddr4_geteccenablesf(pd, eccparam);
	if (result == (u32)0) {
		lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;

		fldval = CPS_FLD_READ(LPDDR4__ECC_ENABLE__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__ECC_ENABLE__REG)));
		switch (fldval) {
		case 3:
			*eccparam = LPDDR4_ECC_ERR_DETECT_CORRECT;
			break;
		case 2:
			*eccparam = LPDDR4_ECC_ERR_DETECT;
			break;
		case 1:
			*eccparam = LPDDR4_ECC_ENABLED;
			break;
		default:
			*eccparam = LPDDR4_ECC_DISABLED;
			break;
		}
	}
	return result;
}

u32 lpddr4_seteccenable(const lpddr4_privatedata *pd, const lpddr4_eccenable *eccparam)
{
	u32 result = 0U;
	u32 regval = 0U;

	result = lpddr4_seteccenablesf(pd, eccparam);
	if (result == (u32)0) {
		lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;

		regval = CPS_FLD_WRITE(LPDDR4__ECC_ENABLE__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__ECC_ENABLE__REG)), *eccparam);
		CPS_REG_WRITE(&(ctlregbase->LPDDR4__ECC_ENABLE__REG), regval);
	}
	return result;
}

u32 lpddr4_getreducmode(const lpddr4_privatedata *pd, lpddr4_reducmode *mode)
{
	u32 result = 0U;

	result = lpddr4_getreducmodesf(pd, mode);
	if (result == (u32)0) {
		lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
		if (CPS_FLD_READ(LPDDR4__REDUC__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__REDUC__REG))) == 0U)
			*mode = LPDDR4_REDUC_ON;
		else
			*mode = LPDDR4_REDUC_OFF;
	}
	return result;
}
u32 lpddr4_setreducmode(const lpddr4_privatedata *pd, const lpddr4_reducmode *mode)
{
	u32 result = 0U;
	u32 regval = 0U;

	result = lpddr4_setreducmodesf(pd, mode);
	if (result == (u32)0) {
		lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
		regval = (u32)CPS_FLD_WRITE(LPDDR4__REDUC__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__REDUC__REG)), *mode);
		CPS_REG_WRITE(&(ctlregbase->LPDDR4__REDUC__REG), regval);
	}
	return result;
}

u32 lpddr4_checkmmrreaderror(const lpddr4_privatedata *pd, u64 *mmrvalue, u8 *mrrstatus)
{
	u32 lowerdata;
	lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
	u32 result = (u32)0;

	if (lpddr4_pollctlirq(pd, LPDDR4_INTR_MRR_ERROR, 100) == 0U) {
		*mrrstatus = (u8)CPS_FLD_READ(LPDDR4__MRR_ERROR_STATUS__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__MRR_ERROR_STATUS__REG)));
		*mmrvalue = (u64)0;
		result = (u32)EIO;
	} else {
		*mrrstatus = (u8)0;
		lowerdata = CPS_REG_READ(&(ctlregbase->LPDDR4__PERIPHERAL_MRR_DATA_0__REG));
		*mmrvalue = CPS_REG_READ(&(ctlregbase->LPDDR4__PERIPHERAL_MRR_DATA_1__REG));
		*mmrvalue = (u64)((*mmrvalue << WORD_SHIFT) | lowerdata);
		result = lpddr4_ackctlinterrupt(pd, LPDDR4_INTR_MR_READ_DONE);
	}
	return result;
}

#ifdef REG_WRITE_VERIF

u32 lpddr4_getdslicemask(u32 dslicenum, u32 arrayoffset)
{
	u32 rwmask = 0U;

	switch (dslicenum) {
	case 0:
		if (arrayoffset < DSLICE0_REG_COUNT)
			rwmask = g_lpddr4_data_slice_0_rw_mask[arrayoffset];
		break;
	case 1:
		if (arrayoffset < DSLICE1_REG_COUNT)
			rwmask = g_lpddr4_data_slice_1_rw_mask[arrayoffset];
		break;
	case 2:
		if (arrayoffset < DSLICE2_REG_COUNT)
			rwmask = g_lpddr4_data_slice_2_rw_mask[arrayoffset];
		break;
	default:
		if (arrayoffset < DSLICE3_REG_COUNT)
			rwmask = g_lpddr4_data_slice_3_rw_mask[arrayoffset];
		break;
	}
	return rwmask;
}
#endif