aboutsummaryrefslogtreecommitdiff
path: root/drivers/rtc/pt7c4338.c
blob: e0a7bd3662fbda8316e3631b5f56920f8f6c2990 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2010 Freescale Semiconductor, Inc.
 * Copyright 2020 NXP
 *
 * Author:	Priyanka Jain <Priyanka.Jain@freescale.com>
 */

/*
 * This file provides Date & Time support (no alarms) for PT7C4338 chip.
 *
 * This file is based on drivers/rtc/ds1337.c
 *
 * PT7C4338 chip is manufactured by Pericom Technology Inc.
 * It is a serial real-time clock which provides
 * 1)Low-power clock/calendar.
 * 2)Programmable square-wave output.
 * It has 56 bytes of nonvolatile RAM.
 */

#include <common.h>
#include <command.h>
#include <dm.h>
#include <log.h>
#include <rtc.h>
#include <i2c.h>

/* RTC register addresses */
#define RTC_SEC_REG_ADDR        0x0
#define RTC_MIN_REG_ADDR        0x1
#define RTC_HR_REG_ADDR         0x2
#define RTC_DAY_REG_ADDR        0x3
#define RTC_DATE_REG_ADDR       0x4
#define RTC_MON_REG_ADDR        0x5
#define RTC_YR_REG_ADDR         0x6
#define RTC_CTL_STAT_REG_ADDR   0x7

/* RTC second register address bit */
#define RTC_SEC_BIT_CH		0x80	/* Clock Halt (in Register 0) */

/* RTC control and status register bits */
#define RTC_CTL_STAT_BIT_RS0    0x1	/* Rate select 0 */
#define RTC_CTL_STAT_BIT_RS1    0x2	/* Rate select 1 */
#define RTC_CTL_STAT_BIT_SQWE   0x10	/* Square Wave Enable */
#define RTC_CTL_STAT_BIT_OSF    0x20	/* Oscillator Stop Flag */
#define RTC_CTL_STAT_BIT_OUT    0x80	/* Output Level Control */

/* RTC reset value */
#define RTC_PT7C4338_RESET_VAL \
	(RTC_CTL_STAT_BIT_RS0 | RTC_CTL_STAT_BIT_RS1 | RTC_CTL_STAT_BIT_OUT)

#if !CONFIG_IS_ENABLED(DM_RTC)
/****** Helper functions ****************************************/
static u8 rtc_read(u8 reg)
{
	return i2c_reg_read(CFG_SYS_I2C_RTC_ADDR, reg);
}

static void rtc_write(u8 reg, u8 val)
{
	i2c_reg_write(CFG_SYS_I2C_RTC_ADDR, reg, val);
}
/****************************************************************/

/* Get the current time from the RTC */
int rtc_get(struct rtc_time *tmp)
{
	int ret = 0;
	u8 sec, min, hour, mday, wday, mon, year, ctl_stat;

	ctl_stat = rtc_read(RTC_CTL_STAT_REG_ADDR);
	sec = rtc_read(RTC_SEC_REG_ADDR);
	min = rtc_read(RTC_MIN_REG_ADDR);
	hour = rtc_read(RTC_HR_REG_ADDR);
	wday = rtc_read(RTC_DAY_REG_ADDR);
	mday = rtc_read(RTC_DATE_REG_ADDR);
	mon = rtc_read(RTC_MON_REG_ADDR);
	year = rtc_read(RTC_YR_REG_ADDR);
	debug("Get RTC year: %02x mon: %02x mday: %02x wday: %02x "
		"hr: %02x min: %02x sec: %02x control_status: %02x\n",
		year, mon, mday, wday, hour, min, sec, ctl_stat);

	if (ctl_stat & RTC_CTL_STAT_BIT_OSF) {
		printf("### Warning: RTC oscillator has stopped\n");
		/* clear the OSF flag */
		rtc_write(RTC_CTL_STAT_REG_ADDR,
			rtc_read(RTC_CTL_STAT_REG_ADDR)\
			& ~RTC_CTL_STAT_BIT_OSF);
		ret = -1;
	}

	tmp->tm_sec = bcd2bin(sec & 0x7F);
	tmp->tm_min = bcd2bin(min & 0x7F);
	tmp->tm_hour = bcd2bin(hour & 0x3F);
	tmp->tm_mday = bcd2bin(mday & 0x3F);
	tmp->tm_mon = bcd2bin(mon & 0x1F);
	tmp->tm_year = bcd2bin(year) + 2000;
	tmp->tm_wday = bcd2bin((wday - 1) & 0x07);
	tmp->tm_yday = 0;
	tmp->tm_isdst = 0;
	debug("Get DATE: %4d-%02d-%02d (wday=%d)  TIME: %2d:%02d:%02d\n",
		tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
		tmp->tm_hour, tmp->tm_min, tmp->tm_sec);

	return ret;
}

/* Set the RTC */
int rtc_set(struct rtc_time *tmp)
{
	debug("Set DATE: %4d-%02d-%02d (wday=%d)  TIME: %2d:%02d:%02d\n",
		tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
		tmp->tm_hour, tmp->tm_min, tmp->tm_sec);

	rtc_write(RTC_YR_REG_ADDR, bin2bcd(tmp->tm_year % 100));
	rtc_write(RTC_MON_REG_ADDR, bin2bcd(tmp->tm_mon));
	rtc_write(RTC_DAY_REG_ADDR, bin2bcd(tmp->tm_wday + 1));
	rtc_write(RTC_DATE_REG_ADDR, bin2bcd(tmp->tm_mday));
	rtc_write(RTC_HR_REG_ADDR, bin2bcd(tmp->tm_hour));
	rtc_write(RTC_MIN_REG_ADDR, bin2bcd(tmp->tm_min));
	rtc_write(RTC_SEC_REG_ADDR, bin2bcd(tmp->tm_sec));

	return 0;
}

/* Reset the RTC */
void rtc_reset(void)
{
	rtc_write(RTC_SEC_REG_ADDR, 0x00);	/* clearing Clock Halt	*/
	rtc_write(RTC_CTL_STAT_REG_ADDR, RTC_PT7C4338_RESET_VAL);
}
#else
static u8 rtc_read(struct udevice *dev, u8 reg)
{
	return dm_i2c_reg_read(dev, reg);
}

static void rtc_write(struct udevice *dev, u8 reg, u8 val)
{
	dm_i2c_reg_write(dev, reg, val);
}

static int pt7c4338_rtc_get(struct udevice *dev, struct rtc_time *tmp)
{
	int ret = 0;
	u8 sec, min, hour, mday, wday, mon, year, ctl_stat;

	ctl_stat = rtc_read(dev, RTC_CTL_STAT_REG_ADDR);
	sec = rtc_read(dev, RTC_SEC_REG_ADDR);
	min = rtc_read(dev, RTC_MIN_REG_ADDR);
	hour = rtc_read(dev, RTC_HR_REG_ADDR);
	wday = rtc_read(dev, RTC_DAY_REG_ADDR);
	mday = rtc_read(dev, RTC_DATE_REG_ADDR);
	mon = rtc_read(dev, RTC_MON_REG_ADDR);
	year = rtc_read(dev, RTC_YR_REG_ADDR);
	debug("Get RTC year: %02x mon: %02x mday: %02x wday: %02x\n",
	      year, mon, mday, wday);
	debug("hr: %02x min: %02x sec: %02x control_status: %02x\n",
	      hour, min, sec, ctl_stat);

	if (ctl_stat & RTC_CTL_STAT_BIT_OSF) {
		printf("### Warning: RTC oscillator has stopped\n");
		/* clear the OSF flag */
		rtc_write(dev, RTC_CTL_STAT_REG_ADDR,
			  rtc_read(dev,
				   RTC_CTL_STAT_REG_ADDR)
				   & ~RTC_CTL_STAT_BIT_OSF);
		ret = -1;
	}

	tmp->tm_sec = bcd2bin(sec & 0x7F);
	tmp->tm_min = bcd2bin(min & 0x7F);
	tmp->tm_hour = bcd2bin(hour & 0x3F);
	tmp->tm_mday = bcd2bin(mday & 0x3F);
	tmp->tm_mon = bcd2bin(mon & 0x1F);
	tmp->tm_year = bcd2bin(year) + 2000;
	tmp->tm_wday = bcd2bin((wday - 1) & 0x07);
	tmp->tm_yday = 0;
	tmp->tm_isdst = 0;
	debug("Get DATE: %4d-%02d-%02d [wday=%d]  TIME: %2d:%02d:%02d\n",
	      tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
	      tmp->tm_hour, tmp->tm_min, tmp->tm_sec);

	return ret;
}

static int pt7c4338_rtc_set(struct udevice *dev, const struct rtc_time *tmp)
{
	debug("Set DATE: %4d-%02d-%02d [wday=%d]  TIME: %2d:%02d:%02d\n",
	      tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
	      tmp->tm_hour, tmp->tm_min, tmp->tm_sec);

	rtc_write(dev, RTC_YR_REG_ADDR, bin2bcd(tmp->tm_year % 100));
	rtc_write(dev, RTC_MON_REG_ADDR, bin2bcd(tmp->tm_mon));
	rtc_write(dev, RTC_DAY_REG_ADDR, bin2bcd(tmp->tm_wday + 1));
	rtc_write(dev, RTC_DATE_REG_ADDR, bin2bcd(tmp->tm_mday));
	rtc_write(dev, RTC_HR_REG_ADDR, bin2bcd(tmp->tm_hour));
	rtc_write(dev, RTC_MIN_REG_ADDR, bin2bcd(tmp->tm_min));
	rtc_write(dev, RTC_SEC_REG_ADDR, bin2bcd(tmp->tm_sec));

	return 0;
}

static int pt7c4338_rtc_reset(struct udevice *dev)
{
	rtc_write(dev, RTC_SEC_REG_ADDR, 0x00);	/* clearing Clock Halt	*/
	rtc_write(dev, RTC_CTL_STAT_REG_ADDR, RTC_PT7C4338_RESET_VAL);
	return 0;
}

static const struct rtc_ops pt7c4338_rtc_ops = {
	.get = pt7c4338_rtc_get,
	.set = pt7c4338_rtc_set,
	.reset = pt7c4338_rtc_reset,
};

static const struct udevice_id pt7c4338_rtc_ids[] = {
	{ .compatible = "pericom,pt7c4338" },
	{ }
};

U_BOOT_DRIVER(rtc_pt7c4338) = {
	.name   = "rtc-pt7c4338",
	.id     = UCLASS_RTC,
	.of_match = pt7c4338_rtc_ids,
	.ops    = &pt7c4338_rtc_ops,
};
#endif