aboutsummaryrefslogtreecommitdiff
path: root/drivers/spi/fsl_qspi.c
blob: 5e0b0692747cb7791c38e33783c515629f8ba6ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
/*
 * Copyright 2013-2014 Freescale Semiconductor, Inc.
 *
 * Freescale Quad Serial Peripheral Interface (QSPI) driver
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include "fsl_qspi.h"

#define RX_BUFFER_SIZE		0x80
#ifdef CONFIG_MX6SX
#define TX_BUFFER_SIZE		0x200
#else
#define TX_BUFFER_SIZE		0x40
#endif

#define OFFSET_BITS_MASK	0x00ffffff

#define FLASH_STATUS_WEL	0x02

/* SEQID */
#define SEQID_WREN		1
#define SEQID_FAST_READ		2
#define SEQID_RDSR		3
#define SEQID_SE		4
#define SEQID_CHIP_ERASE	5
#define SEQID_PP		6
#define SEQID_RDID		7
#define SEQID_BE_4K		8
#ifdef CONFIG_SPI_FLASH_BAR
#define SEQID_BRRD		9
#define SEQID_BRWR		10
#define SEQID_RDEAR		11
#define SEQID_WREAR		12
#endif

/* QSPI CMD */
#define QSPI_CMD_PP		0x02	/* Page program (up to 256 bytes) */
#define QSPI_CMD_RDSR		0x05	/* Read status register */
#define QSPI_CMD_WREN		0x06	/* Write enable */
#define QSPI_CMD_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define QSPI_CMD_BE_4K		0x20    /* 4K erase */
#define QSPI_CMD_CHIP_ERASE	0xc7	/* Erase whole flash chip */
#define QSPI_CMD_SE		0xd8	/* Sector erase (usually 64KiB) */
#define QSPI_CMD_RDID		0x9f	/* Read JEDEC ID */

/* Used for Micron, winbond and Macronix flashes */
#define	QSPI_CMD_WREAR		0xc5	/* EAR register write */
#define	QSPI_CMD_RDEAR		0xc8	/* EAR reigster read */

/* Used for Spansion flashes only. */
#define	QSPI_CMD_BRRD		0x16	/* Bank register read */
#define	QSPI_CMD_BRWR		0x17	/* Bank register write */

/* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
#define QSPI_CMD_FAST_READ_4B	0x0c    /* Read data bytes (high frequency) */
#define QSPI_CMD_PP_4B		0x12    /* Page program (up to 256 bytes) */
#define QSPI_CMD_SE_4B		0xdc    /* Sector erase (usually 64KiB) */

#ifdef CONFIG_SYS_FSL_QSPI_LE
#define qspi_read32		in_le32
#define qspi_write32		out_le32
#elif defined(CONFIG_SYS_FSL_QSPI_BE)
#define qspi_read32		in_be32
#define qspi_write32		out_be32
#endif

static unsigned long spi_bases[] = {
	QSPI0_BASE_ADDR,
#ifdef CONFIG_MX6SX
	QSPI1_BASE_ADDR,
#endif
};

static unsigned long amba_bases[] = {
	QSPI0_AMBA_BASE,
#ifdef CONFIG_MX6SX
	QSPI1_AMBA_BASE,
#endif
};

struct fsl_qspi {
	struct spi_slave slave;
	unsigned long reg_base;
	unsigned long amba_base;
	u32 sf_addr;
	u8 cur_seqid;
};

/* QSPI support swapping the flash read/write data
 * in hardware for LS102xA, but not for VF610 */
static inline u32 qspi_endian_xchg(u32 data)
{
#ifdef CONFIG_VF610
	return swab32(data);
#else
	return data;
#endif
}

static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
{
	return container_of(slave, struct fsl_qspi, slave);
}

static void qspi_set_lut(struct fsl_qspi *qspi)
{
	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
	u32 lut_base;

	/* Unlock the LUT */
	qspi_write32(&regs->lutkey, LUT_KEY_VALUE);
	qspi_write32(&regs->lckcr, QSPI_LCKCR_UNLOCK);

	/* Write Enable */
	lut_base = SEQID_WREN * 4;
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
	qspi_write32(&regs->lut[lut_base + 1], 0);
	qspi_write32(&regs->lut[lut_base + 2], 0);
	qspi_write32(&regs->lut[lut_base + 3], 0);

	/* Fast Read */
	lut_base = SEQID_FAST_READ * 4;
#ifdef CONFIG_SPI_FLASH_BAR
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
		qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
			PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
			PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	else
		qspi_write32(&regs->lut[lut_base],
			     OPRND0(QSPI_CMD_FAST_READ_4B) |
			     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
			     OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
			     INSTR1(LUT_ADDR));
#endif
	qspi_write32(&regs->lut[lut_base + 1], OPRND0(8) | PAD0(LUT_PAD1) |
		INSTR0(LUT_DUMMY) | OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
		INSTR1(LUT_READ));
	qspi_write32(&regs->lut[lut_base + 2], 0);
	qspi_write32(&regs->lut[lut_base + 3], 0);

	/* Read Status */
	lut_base = SEQID_RDSR * 4;
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
	qspi_write32(&regs->lut[lut_base + 1], 0);
	qspi_write32(&regs->lut[lut_base + 2], 0);
	qspi_write32(&regs->lut[lut_base + 3], 0);

	/* Erase a sector */
	lut_base = SEQID_SE * 4;
#ifdef CONFIG_SPI_FLASH_BAR
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
		qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
			PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
			PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	else
		qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE_4B) |
			PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
			PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#endif
	qspi_write32(&regs->lut[lut_base + 1], 0);
	qspi_write32(&regs->lut[lut_base + 2], 0);
	qspi_write32(&regs->lut[lut_base + 3], 0);

	/* Erase the whole chip */
	lut_base = SEQID_CHIP_ERASE * 4;
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_CHIP_ERASE) |
		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
	qspi_write32(&regs->lut[lut_base + 1], 0);
	qspi_write32(&regs->lut[lut_base + 2], 0);
	qspi_write32(&regs->lut[lut_base + 3], 0);

	/* Page Program */
	lut_base = SEQID_PP * 4;
#ifdef CONFIG_SPI_FLASH_BAR
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
		qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
			PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
			PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	else
		qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP_4B) |
			PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
			PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#endif
#ifdef CONFIG_MX6SX
	/*
	 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
	 * So, Use IDATSZ in IPCR to determine the size and here set 0.
	 */
	qspi_write32(&regs->lut[lut_base + 1], OPRND0(0) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
#else
	qspi_write32(&regs->lut[lut_base + 1], OPRND0(TX_BUFFER_SIZE) |
		PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
#endif
	qspi_write32(&regs->lut[lut_base + 2], 0);
	qspi_write32(&regs->lut[lut_base + 3], 0);

	/* READ ID */
	lut_base = SEQID_RDID * 4;
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
	qspi_write32(&regs->lut[lut_base + 1], 0);
	qspi_write32(&regs->lut[lut_base + 2], 0);
	qspi_write32(&regs->lut[lut_base + 3], 0);

	/* SUB SECTOR 4K ERASE */
	lut_base = SEQID_BE_4K * 4;
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));

#ifdef CONFIG_SPI_FLASH_BAR
	/*
	 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
	 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
	 * initialization.
	 */
	lut_base = SEQID_BRRD * 4;
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));

	lut_base = SEQID_BRWR * 4;
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));

	lut_base = SEQID_RDEAR * 4;
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));

	lut_base = SEQID_WREAR * 4;
	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
#endif
	/* Lock the LUT */
	qspi_write32(&regs->lutkey, LUT_KEY_VALUE);
	qspi_write32(&regs->lckcr, QSPI_LCKCR_LOCK);
}

#if defined(CONFIG_SYS_FSL_QSPI_AHB)
/*
 * If we have changed the content of the flash by writing or erasing,
 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 * domain at the same time.
 */
static inline void qspi_ahb_invalid(struct fsl_qspi *q)
{
	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)q->reg_base;
	u32 reg;

	reg = qspi_read32(&regs->mcr);
	reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
	qspi_write32(&regs->mcr, reg);

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	udelay(1);

	reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
	qspi_write32(&regs->mcr, reg);
}

/* Read out the data from the AHB buffer. */
static inline void qspi_ahb_read(struct fsl_qspi *q, u8 *rxbuf, int len)
{
	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)q->reg_base;
	u32 mcr_reg;

	mcr_reg = qspi_read32(&regs->mcr);

	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);

	/* Read out the data directly from the AHB buffer. */
	memcpy(rxbuf, (u8 *)(q->amba_base + q->sf_addr), len);

	qspi_write32(&regs->mcr, mcr_reg);
}

static void qspi_enable_ddr_mode(struct fsl_qspi_regs *regs)
{
	u32 reg, reg2;

	reg = qspi_read32(&regs->mcr);
	/* Disable the module */
	qspi_write32(&regs->mcr, reg | QSPI_MCR_MDIS_MASK);

	/* Set the Sampling Register for DDR */
	reg2 = qspi_read32(&regs->smpr);
	reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
	reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
	qspi_write32(&regs->smpr, reg2);

	/* Enable the module again (enable the DDR too) */
	reg |= QSPI_MCR_DDR_EN_MASK;
	/* Enable bit 29 for imx6sx */
	reg |= (1 << 29);

	qspi_write32(&regs->mcr, reg);
}

/*
 * There are two different ways to read out the data from the flash:
 *  the "IP Command Read" and the "AHB Command Read".
 *
 * The IC guy suggests we use the "AHB Command Read" which is faster
 * then the "IP Command Read". (What's more is that there is a bug in
 * the "IP Command Read" in the Vybrid.)
 *
 * After we set up the registers for the "AHB Command Read", we can use
 * the memcpy to read the data directly. A "missed" access to the buffer
 * causes the controller to clear the buffer, and use the sequence pointed
 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 */
static void qspi_init_ahb_read(struct fsl_qspi_regs *regs)
{
	/* AHB configuration for access buffer 0/1/2 .*/
	qspi_write32(&regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
	qspi_write32(&regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
	qspi_write32(&regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
	qspi_write32(&regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
		     (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));

	/* We only use the buffer3 */
	qspi_write32(&regs->buf0ind, 0);
	qspi_write32(&regs->buf1ind, 0);
	qspi_write32(&regs->buf2ind, 0);

	/*
	 * Set the default lut sequence for AHB Read.
	 * Parallel mode is disabled.
	 */
	qspi_write32(&regs->bfgencr,
		     SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);

	/*Enable DDR Mode*/
	qspi_enable_ddr_mode(regs);
}
#endif

void spi_init()
{
	/* do nothing */
}

struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
		unsigned int max_hz, unsigned int mode)
{
	struct fsl_qspi *qspi;
	struct fsl_qspi_regs *regs;
	u32 smpr_val;
	u32 total_size;

	if (bus >= ARRAY_SIZE(spi_bases))
		return NULL;

	if (cs >= FSL_QSPI_FLASH_NUM)
		return NULL;

	qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
	if (!qspi)
		return NULL;

	qspi->reg_base = spi_bases[bus];
	/*
	 * According cs, use different amba_base to choose the
	 * corresponding flash devices.
	 *
	 * If not, only one flash device is used even if passing
	 * different cs using `sf probe`
	 */
	qspi->amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;

	qspi->slave.max_write_size = TX_BUFFER_SIZE;

	regs = (struct fsl_qspi_regs *)qspi->reg_base;
	qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);

	smpr_val = qspi_read32(&regs->smpr);
	qspi_write32(&regs->smpr, smpr_val & ~(QSPI_SMPR_FSDLY_MASK |
		QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK));
	qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK);

	total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
	/*
	 * Any read access to non-implemented addresses will provide
	 * undefined results.
	 *
	 * In case single die flash devices, TOP_ADDR_MEMA2 and
	 * TOP_ADDR_MEMB2 should be initialized/programmed to
	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
	 * setting the size of these devices to 0.  This would ensure
	 * that the complete memory map is assigned to only one flash device.
	 */
	qspi_write32(&regs->sfa1ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
	qspi_write32(&regs->sfa2ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
	qspi_write32(&regs->sfb1ad, total_size | amba_bases[bus]);
	qspi_write32(&regs->sfb2ad, total_size | amba_bases[bus]);

	qspi_set_lut(qspi);

	smpr_val = qspi_read32(&regs->smpr);
	smpr_val &= ~QSPI_SMPR_DDRSMP_MASK;
	qspi_write32(&regs->smpr, smpr_val);
	qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK);

#ifdef CONFIG_SYS_FSL_QSPI_AHB
	qspi_init_ahb_read(regs);
#endif
	return &qspi->slave;
}

void spi_free_slave(struct spi_slave *slave)
{
	struct fsl_qspi *qspi = to_qspi_spi(slave);

	free(qspi);
}

int spi_claim_bus(struct spi_slave *slave)
{
	return 0;
}

#ifdef CONFIG_SPI_FLASH_BAR
/* Bank register read/write, EAR register read/write */
static void qspi_op_rdbank(struct fsl_qspi *qspi, u8 *rxbuf, u32 len)
{
	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
	u32 reg, mcr_reg, data, seqid;

	mcr_reg = qspi_read32(&regs->mcr);
	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);

	qspi_write32(&regs->sfar, qspi->amba_base);

	if (qspi->cur_seqid == QSPI_CMD_BRRD)
		seqid = SEQID_BRRD;
	else
		seqid = SEQID_RDEAR;

	qspi_write32(&regs->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | len);

	/* Wait previous command complete */
	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
		;

	while (1) {
		reg = qspi_read32(&regs->rbsr);
		if (reg & QSPI_RBSR_RDBFL_MASK) {
			data = qspi_read32(&regs->rbdr[0]);
			data = qspi_endian_xchg(data);
			memcpy(rxbuf, &data, len);
			qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
				     QSPI_MCR_CLR_RXF_MASK);
			break;
		}
	}

	qspi_write32(&regs->mcr, mcr_reg);
}
#endif

static void qspi_op_rdid(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
{
	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
	u32 mcr_reg, rbsr_reg, data;
	int i, size;

	mcr_reg = qspi_read32(&regs->mcr);
	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
		QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);

	qspi_write32(&regs->sfar, qspi->amba_base);

	qspi_write32(&regs->ipcr, (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
		;

	i = 0;
	size = len;
	while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
		rbsr_reg = qspi_read32(&regs->rbsr);
		if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
			data = qspi_read32(&regs->rbdr[i]);
			data = qspi_endian_xchg(data);
			memcpy(rxbuf, &data, 4);
			rxbuf++;
			size -= 4;
			i++;
		}
	}

	qspi_write32(&regs->mcr, mcr_reg);
}

#ifndef CONFIG_SYS_FSL_QSPI_AHB
/* If not use AHB read, read data from ip interface */
static void qspi_op_read(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
{
	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
	u32 mcr_reg, data;
	int i, size;
	u32 to_or_from;

	mcr_reg = qspi_read32(&regs->mcr);
	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
		QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);

	to_or_from = qspi->sf_addr + qspi->amba_base;

	while (len > 0) {
		qspi_write32(&regs->sfar, to_or_from);

		size = (len > RX_BUFFER_SIZE) ?
			RX_BUFFER_SIZE : len;

		qspi_write32(&regs->ipcr,
			(SEQID_FAST_READ << QSPI_IPCR_SEQID_SHIFT) | size);
		while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
			;

		to_or_from += size;
		len -= size;

		i = 0;
		while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
			data = qspi_read32(&regs->rbdr[i]);
			data = qspi_endian_xchg(data);
			memcpy(rxbuf, &data, 4);
			rxbuf++;
			size -= 4;
			i++;
		}
		qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
			QSPI_MCR_CLR_RXF_MASK);
	}

	qspi_write32(&regs->mcr, mcr_reg);
}
#endif

static void qspi_op_write(struct fsl_qspi *qspi, u8 *txbuf, u32 len)
{
	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
	u32 mcr_reg, data, reg, status_reg, seqid;
	int i, size, tx_size;
	u32 to_or_from = 0;

	mcr_reg = qspi_read32(&regs->mcr);
	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
		QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);

	status_reg = 0;
	while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
		qspi_write32(&regs->ipcr,
			(SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
		while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
			;

		qspi_write32(&regs->ipcr,
			(SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
		while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
			;

		reg = qspi_read32(&regs->rbsr);
		if (reg & QSPI_RBSR_RDBFL_MASK) {
			status_reg = qspi_read32(&regs->rbdr[0]);
			status_reg = qspi_endian_xchg(status_reg);
		}
		qspi_write32(&regs->mcr,
			qspi_read32(&regs->mcr) | QSPI_MCR_CLR_RXF_MASK);
	}

	/* Default is page programming */
	seqid = SEQID_PP;
#ifdef CONFIG_SPI_FLASH_BAR
	if (qspi->cur_seqid == QSPI_CMD_BRWR)
		seqid = SEQID_BRWR;
	else if (qspi->cur_seqid == QSPI_CMD_WREAR)
		seqid = SEQID_WREAR;
#endif

	to_or_from = qspi->sf_addr + qspi->amba_base;

	qspi_write32(&regs->sfar, to_or_from);

	tx_size = (len > TX_BUFFER_SIZE) ?
		TX_BUFFER_SIZE : len;

	size = tx_size / 4;
	for (i = 0; i < size; i++) {
		memcpy(&data, txbuf, 4);
		data = qspi_endian_xchg(data);
		qspi_write32(&regs->tbdr, data);
		txbuf += 4;
	}

	size = tx_size % 4;
	if (size) {
		data = 0;
		memcpy(&data, txbuf, size);
		data = qspi_endian_xchg(data);
		qspi_write32(&regs->tbdr, data);
	}

	qspi_write32(&regs->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
		;

	qspi_write32(&regs->mcr, mcr_reg);
}

static void qspi_op_rdsr(struct fsl_qspi *qspi, u32 *rxbuf)
{
	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
	u32 mcr_reg, reg, data;

	mcr_reg = qspi_read32(&regs->mcr);
	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
		QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);

	qspi_write32(&regs->sfar, qspi->amba_base);

	qspi_write32(&regs->ipcr,
		(SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
		;

	while (1) {
		reg = qspi_read32(&regs->rbsr);
		if (reg & QSPI_RBSR_RDBFL_MASK) {
			data = qspi_read32(&regs->rbdr[0]);
			data = qspi_endian_xchg(data);
			memcpy(rxbuf, &data, 4);
			qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
				QSPI_MCR_CLR_RXF_MASK);
			break;
		}
	}

	qspi_write32(&regs->mcr, mcr_reg);
}

static void qspi_op_erase(struct fsl_qspi *qspi)
{
	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
	u32 mcr_reg;
	u32 to_or_from = 0;

	mcr_reg = qspi_read32(&regs->mcr);
	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
		QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);

	to_or_from = qspi->sf_addr + qspi->amba_base;
	qspi_write32(&regs->sfar, to_or_from);

	qspi_write32(&regs->ipcr,
		(SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
		;

	if (qspi->cur_seqid == QSPI_CMD_SE) {
		qspi_write32(&regs->ipcr,
			     (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
	} else if (qspi->cur_seqid == QSPI_CMD_BE_4K) {
		qspi_write32(&regs->ipcr,
			     (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
	}
	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
		;

	qspi_write32(&regs->mcr, mcr_reg);
}

int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
		const void *dout, void *din, unsigned long flags)
{
	struct fsl_qspi *qspi = to_qspi_spi(slave);
	u32 bytes = DIV_ROUND_UP(bitlen, 8);
	static u32 wr_sfaddr;
	u32 txbuf;

	if (dout) {
		if (flags & SPI_XFER_BEGIN) {
			qspi->cur_seqid = *(u8 *)dout;
			memcpy(&txbuf, dout, 4);
		}

		if (flags == SPI_XFER_END) {
			qspi->sf_addr = wr_sfaddr;
			qspi_op_write(qspi, (u8 *)dout, bytes);
			return 0;
		}

		if (qspi->cur_seqid == QSPI_CMD_FAST_READ) {
			qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
		} else if ((qspi->cur_seqid == QSPI_CMD_SE) ||
			   (qspi->cur_seqid == QSPI_CMD_BE_4K)) {
			qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
			qspi_op_erase(qspi);
		} else if (qspi->cur_seqid == QSPI_CMD_PP)
			wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
#ifdef CONFIG_SPI_FLASH_BAR
		else if ((qspi->cur_seqid == QSPI_CMD_BRWR) ||
			 (qspi->cur_seqid == QSPI_CMD_WREAR)) {
			wr_sfaddr = 0;
		}
#endif
	}

	if (din) {
		if (qspi->cur_seqid == QSPI_CMD_FAST_READ) {
#ifdef CONFIG_SYS_FSL_QSPI_AHB
			qspi_ahb_read(qspi, din, bytes);
#else
			qspi_op_read(qspi, din, bytes);
#endif
		}
		else if (qspi->cur_seqid == QSPI_CMD_RDID)
			qspi_op_rdid(qspi, din, bytes);
		else if (qspi->cur_seqid == QSPI_CMD_RDSR)
			qspi_op_rdsr(qspi, din);
#ifdef CONFIG_SPI_FLASH_BAR
		else if ((qspi->cur_seqid == QSPI_CMD_BRRD) ||
			 (qspi->cur_seqid == QSPI_CMD_RDEAR)) {
			qspi->sf_addr = 0;
			qspi_op_rdbank(qspi, din, bytes);
		}
#endif
	}

#ifdef CONFIG_SYS_FSL_QSPI_AHB
	if ((qspi->cur_seqid == QSPI_CMD_SE) ||
	    (qspi->cur_seqid == QSPI_CMD_PP) ||
	    (qspi->cur_seqid == QSPI_CMD_BE_4K) ||
	    (qspi->cur_seqid == QSPI_CMD_WREAR) ||
	    (qspi->cur_seqid == QSPI_CMD_BRWR))
		qspi_ahb_invalid(qspi);
#endif

	return 0;
}

void spi_release_bus(struct spi_slave *slave)
{
	/* Nothing to do */
}