1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
|
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2018 Xilinx
*
* Xilinx ZynqMP Generic Quad-SPI(QSPI) controller driver(master mode only)
*/
#include <common.h>
#include <cpu_func.h>
#include <log.h>
#include <asm/arch/sys_proto.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <clk.h>
#include <dm.h>
#include <malloc.h>
#include <memalign.h>
#include <spi.h>
#include <spi-mem.h>
#include <ubi_uboot.h>
#include <wait_bit.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/err.h>
#define GQSPI_GFIFO_STRT_MODE_MASK BIT(29)
#define GQSPI_CONFIG_MODE_EN_MASK (3 << 30)
#define GQSPI_CONFIG_DMA_MODE (2 << 30)
#define GQSPI_CONFIG_CPHA_MASK BIT(2)
#define GQSPI_CONFIG_CPOL_MASK BIT(1)
/*
* QSPI Interrupt Registers bit Masks
*
* All the four interrupt registers (Status/Mask/Enable/Disable) have the same
* bit definitions.
*/
#define GQSPI_IXR_TXNFULL_MASK 0x00000004 /* QSPI TX FIFO Overflow */
#define GQSPI_IXR_TXFULL_MASK 0x00000008 /* QSPI TX FIFO is full */
#define GQSPI_IXR_RXNEMTY_MASK 0x00000010 /* QSPI RX FIFO Not Empty */
#define GQSPI_IXR_GFEMTY_MASK 0x00000080 /* QSPI Generic FIFO Empty */
#define GQSPI_IXR_ALL_MASK (GQSPI_IXR_TXNFULL_MASK | \
GQSPI_IXR_RXNEMTY_MASK)
/*
* QSPI Enable Register bit Masks
*
* This register is used to enable or disable the QSPI controller
*/
#define GQSPI_ENABLE_ENABLE_MASK 0x00000001 /* QSPI Enable Bit Mask */
#define GQSPI_GFIFO_LOW_BUS BIT(14)
#define GQSPI_GFIFO_CS_LOWER BIT(12)
#define GQSPI_GFIFO_UP_BUS BIT(15)
#define GQSPI_GFIFO_CS_UPPER BIT(13)
#define GQSPI_SPI_MODE_QSPI (3 << 10)
#define GQSPI_SPI_MODE_SPI BIT(10)
#define GQSPI_SPI_MODE_DUAL_SPI (2 << 10)
#define GQSPI_IMD_DATA_CS_ASSERT 5
#define GQSPI_IMD_DATA_CS_DEASSERT 5
#define GQSPI_GFIFO_TX BIT(16)
#define GQSPI_GFIFO_RX BIT(17)
#define GQSPI_GFIFO_STRIPE_MASK BIT(18)
#define GQSPI_GFIFO_IMD_MASK 0xFF
#define GQSPI_GFIFO_EXP_MASK BIT(9)
#define GQSPI_GFIFO_DATA_XFR_MASK BIT(8)
#define GQSPI_STRT_GEN_FIFO BIT(28)
#define GQSPI_GEN_FIFO_STRT_MOD BIT(29)
#define GQSPI_GFIFO_WP_HOLD BIT(19)
#define GQSPI_BAUD_DIV_MASK (7 << 3)
#define GQSPI_DFLT_BAUD_RATE_DIV BIT(3)
#define GQSPI_GFIFO_ALL_INT_MASK 0xFBE
#define GQSPI_DMA_DST_I_STS_DONE BIT(1)
#define GQSPI_DMA_DST_I_STS_MASK 0xFE
#define MODEBITS 0x6
#define GQSPI_GFIFO_SELECT BIT(0)
#define GQSPI_FIFO_THRESHOLD 1
#define SPI_XFER_ON_BOTH 0
#define SPI_XFER_ON_LOWER 1
#define SPI_XFER_ON_UPPER 2
#define GQSPI_DMA_ALIGN 0x4
#define GQSPI_MAX_BAUD_RATE_VAL 7
#define GQSPI_DFLT_BAUD_RATE_VAL 2
#define GQSPI_TIMEOUT 100000000
#define GQSPI_BAUD_DIV_SHIFT 2
#define GQSPI_LPBK_DLY_ADJ_LPBK_SHIFT 5
#define GQSPI_LPBK_DLY_ADJ_DLY_1 0x2
#define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT 3
#define GQSPI_LPBK_DLY_ADJ_DLY_0 0x3
#define GQSPI_USE_DATA_DLY 0x1
#define GQSPI_USE_DATA_DLY_SHIFT 31
#define GQSPI_DATA_DLY_ADJ_VALUE 0x2
#define GQSPI_DATA_DLY_ADJ_SHIFT 28
#define TAP_DLY_BYPASS_LQSPI_RX_VALUE 0x1
#define TAP_DLY_BYPASS_LQSPI_RX_SHIFT 2
#define GQSPI_DATA_DLY_ADJ_OFST 0x000001F8
#define IOU_TAPDLY_BYPASS_OFST 0xFF180390
#define GQSPI_LPBK_DLY_ADJ_LPBK_MASK 0x00000020
#define GQSPI_FREQ_40MHZ 40000000
#define GQSPI_FREQ_100MHZ 100000000
#define GQSPI_FREQ_150MHZ 150000000
#define IOU_TAPDLY_BYPASS_MASK 0x7
#define GQSPI_REG_OFFSET 0x100
#define GQSPI_DMA_REG_OFFSET 0x800
/* QSPI register offsets */
struct zynqmp_qspi_regs {
u32 confr; /* 0x00 */
u32 isr; /* 0x04 */
u32 ier; /* 0x08 */
u32 idisr; /* 0x0C */
u32 imaskr; /* 0x10 */
u32 enbr; /* 0x14 */
u32 dr; /* 0x18 */
u32 txd0r; /* 0x1C */
u32 drxr; /* 0x20 */
u32 sicr; /* 0x24 */
u32 txftr; /* 0x28 */
u32 rxftr; /* 0x2C */
u32 gpior; /* 0x30 */
u32 reserved0; /* 0x34 */
u32 lpbkdly; /* 0x38 */
u32 reserved1; /* 0x3C */
u32 genfifo; /* 0x40 */
u32 gqspisel; /* 0x44 */
u32 reserved2; /* 0x48 */
u32 gqfifoctrl; /* 0x4C */
u32 gqfthr; /* 0x50 */
u32 gqpollcfg; /* 0x54 */
u32 gqpollto; /* 0x58 */
u32 gqxfersts; /* 0x5C */
u32 gqfifosnap; /* 0x60 */
u32 gqrxcpy; /* 0x64 */
u32 reserved3[36]; /* 0x68 */
u32 gqspidlyadj; /* 0xF8 */
};
struct zynqmp_qspi_dma_regs {
u32 dmadst; /* 0x00 */
u32 dmasize; /* 0x04 */
u32 dmasts; /* 0x08 */
u32 dmactrl; /* 0x0C */
u32 reserved0; /* 0x10 */
u32 dmaisr; /* 0x14 */
u32 dmaier; /* 0x18 */
u32 dmaidr; /* 0x1C */
u32 dmaimr; /* 0x20 */
u32 dmactrl2; /* 0x24 */
u32 dmadstmsb; /* 0x28 */
};
DECLARE_GLOBAL_DATA_PTR;
struct zynqmp_qspi_plat {
struct zynqmp_qspi_regs *regs;
struct zynqmp_qspi_dma_regs *dma_regs;
u32 frequency;
u32 speed_hz;
};
struct zynqmp_qspi_priv {
struct zynqmp_qspi_regs *regs;
struct zynqmp_qspi_dma_regs *dma_regs;
const void *tx_buf;
void *rx_buf;
unsigned int len;
int bytes_to_transfer;
int bytes_to_receive;
const struct spi_mem_op *op;
};
static int zynqmp_qspi_of_to_plat(struct udevice *bus)
{
struct zynqmp_qspi_plat *plat = dev_get_plat(bus);
debug("%s\n", __func__);
plat->regs = (struct zynqmp_qspi_regs *)(dev_read_addr(bus) +
GQSPI_REG_OFFSET);
plat->dma_regs = (struct zynqmp_qspi_dma_regs *)
(dev_read_addr(bus) + GQSPI_DMA_REG_OFFSET);
return 0;
}
static void zynqmp_qspi_init_hw(struct zynqmp_qspi_priv *priv)
{
u32 config_reg;
struct zynqmp_qspi_regs *regs = priv->regs;
writel(GQSPI_GFIFO_SELECT, ®s->gqspisel);
writel(GQSPI_GFIFO_ALL_INT_MASK, ®s->idisr);
writel(GQSPI_FIFO_THRESHOLD, ®s->txftr);
writel(GQSPI_FIFO_THRESHOLD, ®s->rxftr);
writel(GQSPI_GFIFO_ALL_INT_MASK, ®s->isr);
config_reg = readl(®s->confr);
config_reg &= ~(GQSPI_GFIFO_STRT_MODE_MASK |
GQSPI_CONFIG_MODE_EN_MASK);
config_reg |= GQSPI_CONFIG_DMA_MODE |
GQSPI_GFIFO_WP_HOLD |
GQSPI_DFLT_BAUD_RATE_DIV;
writel(config_reg, ®s->confr);
writel(GQSPI_ENABLE_ENABLE_MASK, ®s->enbr);
}
static u32 zynqmp_qspi_bus_select(struct zynqmp_qspi_priv *priv)
{
u32 gqspi_fifo_reg = 0;
gqspi_fifo_reg = GQSPI_GFIFO_LOW_BUS |
GQSPI_GFIFO_CS_LOWER;
return gqspi_fifo_reg;
}
static u32 zynqmp_qspi_genfifo_mode(u8 buswidth)
{
switch (buswidth) {
case 1:
return GQSPI_SPI_MODE_SPI;
case 2:
return GQSPI_SPI_MODE_DUAL_SPI;
case 4:
return GQSPI_SPI_MODE_QSPI;
default:
debug("Unsupported bus width %u\n", buswidth);
return GQSPI_SPI_MODE_SPI;
}
}
static void zynqmp_qspi_fill_gen_fifo(struct zynqmp_qspi_priv *priv,
u32 gqspi_fifo_reg)
{
struct zynqmp_qspi_regs *regs = priv->regs;
int ret = 0;
ret = wait_for_bit_le32(®s->isr, GQSPI_IXR_GFEMTY_MASK, 1,
GQSPI_TIMEOUT, 1);
if (ret)
printf("%s Timeout\n", __func__);
writel(gqspi_fifo_reg, ®s->genfifo);
}
static void zynqmp_qspi_chipselect(struct zynqmp_qspi_priv *priv, int is_on)
{
u32 gqspi_fifo_reg = 0;
if (is_on) {
gqspi_fifo_reg = zynqmp_qspi_bus_select(priv);
gqspi_fifo_reg |= GQSPI_SPI_MODE_SPI |
GQSPI_IMD_DATA_CS_ASSERT;
} else {
gqspi_fifo_reg = GQSPI_GFIFO_LOW_BUS;
gqspi_fifo_reg |= GQSPI_IMD_DATA_CS_DEASSERT;
}
debug("GFIFO_CMD_CS: 0x%x\n", gqspi_fifo_reg);
zynqmp_qspi_fill_gen_fifo(priv, gqspi_fifo_reg);
}
void zynqmp_qspi_set_tapdelay(struct udevice *bus, u32 baudrateval)
{
struct zynqmp_qspi_plat *plat = dev_get_plat(bus);
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct zynqmp_qspi_regs *regs = priv->regs;
u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate;
u32 reqhz = 0;
clk_rate = plat->frequency;
reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval));
debug("%s, req_hz:%d, clk_rate:%d, baudrateval:%d\n",
__func__, reqhz, clk_rate, baudrateval);
if (reqhz < GQSPI_FREQ_40MHZ) {
zynqmp_mmio_read(IOU_TAPDLY_BYPASS_OFST, &tapdlybypass);
tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
} else if (reqhz <= GQSPI_FREQ_100MHZ) {
zynqmp_mmio_read(IOU_TAPDLY_BYPASS_OFST, &tapdlybypass);
tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
lpbkdlyadj = readl(®s->lpbkdly);
lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_LPBK_MASK);
datadlyadj = readl(®s->gqspidlyadj);
datadlyadj |= ((GQSPI_USE_DATA_DLY << GQSPI_USE_DATA_DLY_SHIFT)
| (GQSPI_DATA_DLY_ADJ_VALUE <<
GQSPI_DATA_DLY_ADJ_SHIFT));
} else if (reqhz <= GQSPI_FREQ_150MHZ) {
lpbkdlyadj = readl(®s->lpbkdly);
lpbkdlyadj |= ((GQSPI_LPBK_DLY_ADJ_LPBK_MASK) |
GQSPI_LPBK_DLY_ADJ_DLY_0);
}
zynqmp_mmio_write(IOU_TAPDLY_BYPASS_OFST, IOU_TAPDLY_BYPASS_MASK,
tapdlybypass);
writel(lpbkdlyadj, ®s->lpbkdly);
writel(datadlyadj, ®s->gqspidlyadj);
}
static int zynqmp_qspi_set_speed(struct udevice *bus, uint speed)
{
struct zynqmp_qspi_plat *plat = dev_get_plat(bus);
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct zynqmp_qspi_regs *regs = priv->regs;
u32 confr;
u8 baud_rate_val = 0;
debug("%s\n", __func__);
if (speed > plat->frequency)
speed = plat->frequency;
if (plat->speed_hz != speed) {
/* Set the clock frequency */
/* If speed == 0, default to lowest speed */
while ((baud_rate_val < 8) &&
((plat->frequency /
(2 << baud_rate_val)) > speed))
baud_rate_val++;
if (baud_rate_val > GQSPI_MAX_BAUD_RATE_VAL)
baud_rate_val = GQSPI_DFLT_BAUD_RATE_VAL;
plat->speed_hz = plat->frequency / (2 << baud_rate_val);
confr = readl(®s->confr);
confr &= ~GQSPI_BAUD_DIV_MASK;
confr |= (baud_rate_val << 3);
writel(confr, ®s->confr);
zynqmp_qspi_set_tapdelay(bus, baud_rate_val);
debug("regs=%p, speed=%d\n", priv->regs, plat->speed_hz);
}
return 0;
}
static int zynqmp_qspi_probe(struct udevice *bus)
{
struct zynqmp_qspi_plat *plat = dev_get_plat(bus);
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct clk clk;
unsigned long clock;
int ret;
debug("%s: bus:%p, priv:%p\n", __func__, bus, priv);
priv->regs = plat->regs;
priv->dma_regs = plat->dma_regs;
ret = clk_get_by_index(bus, 0, &clk);
if (ret < 0) {
dev_err(bus, "failed to get clock\n");
return ret;
}
clock = clk_get_rate(&clk);
if (IS_ERR_VALUE(clock)) {
dev_err(bus, "failed to get rate\n");
return clock;
}
debug("%s: CLK %ld\n", __func__, clock);
ret = clk_enable(&clk);
if (ret) {
dev_err(bus, "failed to enable clock\n");
return ret;
}
plat->frequency = clock;
plat->speed_hz = plat->frequency / 2;
/* init the zynq spi hw */
zynqmp_qspi_init_hw(priv);
return 0;
}
static int zynqmp_qspi_set_mode(struct udevice *bus, uint mode)
{
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct zynqmp_qspi_regs *regs = priv->regs;
u32 confr;
debug("%s\n", __func__);
/* Set the SPI Clock phase and polarities */
confr = readl(®s->confr);
confr &= ~(GQSPI_CONFIG_CPHA_MASK |
GQSPI_CONFIG_CPOL_MASK);
if (mode & SPI_CPHA)
confr |= GQSPI_CONFIG_CPHA_MASK;
if (mode & SPI_CPOL)
confr |= GQSPI_CONFIG_CPOL_MASK;
writel(confr, ®s->confr);
return 0;
}
static int zynqmp_qspi_fill_tx_fifo(struct zynqmp_qspi_priv *priv, u32 size)
{
u32 data;
int ret = 0;
struct zynqmp_qspi_regs *regs = priv->regs;
u32 *buf = (u32 *)priv->tx_buf;
u32 len = size;
debug("TxFIFO: 0x%x, size: 0x%x\n", readl(®s->isr),
size);
while (size) {
ret = wait_for_bit_le32(®s->isr, GQSPI_IXR_TXNFULL_MASK, 1,
GQSPI_TIMEOUT, 1);
if (ret) {
printf("%s: Timeout\n", __func__);
return ret;
}
if (size >= 4) {
writel(*buf, ®s->txd0r);
buf++;
size -= 4;
} else {
switch (size) {
case 1:
data = *((u8 *)buf);
buf += 1;
data |= GENMASK(31, 8);
break;
case 2:
data = *((u16 *)buf);
buf += 2;
data |= GENMASK(31, 16);
break;
case 3:
data = *buf;
buf += 3;
data |= GENMASK(31, 24);
break;
}
writel(data, ®s->txd0r);
size = 0;
}
}
priv->tx_buf += len;
return 0;
}
static void zynqmp_qspi_genfifo_cmd(struct zynqmp_qspi_priv *priv)
{
const struct spi_mem_op *op = priv->op;
u32 gen_fifo_cmd;
u8 i, dummy_cycles, addr;
/* Send opcode */
gen_fifo_cmd = zynqmp_qspi_bus_select(priv);
gen_fifo_cmd |= zynqmp_qspi_genfifo_mode(op->cmd.buswidth);
gen_fifo_cmd |= GQSPI_GFIFO_TX;
gen_fifo_cmd |= op->cmd.opcode;
zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd);
/* Send address */
for (i = 0; i < op->addr.nbytes; i++) {
addr = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
gen_fifo_cmd = zynqmp_qspi_bus_select(priv);
gen_fifo_cmd |= zynqmp_qspi_genfifo_mode(op->addr.buswidth);
gen_fifo_cmd |= GQSPI_GFIFO_TX;
gen_fifo_cmd |= addr;
debug("GFIFO_CMD_Cmd = 0x%x\n", gen_fifo_cmd);
zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd);
}
/* Send dummy */
if (op->dummy.nbytes) {
dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
gen_fifo_cmd = zynqmp_qspi_bus_select(priv);
gen_fifo_cmd |= zynqmp_qspi_genfifo_mode(op->dummy.buswidth);
gen_fifo_cmd &= ~(GQSPI_GFIFO_TX | GQSPI_GFIFO_RX);
gen_fifo_cmd |= GQSPI_GFIFO_DATA_XFR_MASK;
gen_fifo_cmd |= dummy_cycles;
zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd);
}
}
static u32 zynqmp_qspi_calc_exp(struct zynqmp_qspi_priv *priv,
u32 *gen_fifo_cmd)
{
u32 expval = 8;
u32 len;
while (1) {
if (priv->len > 255) {
if (priv->len & (1 << expval)) {
*gen_fifo_cmd &= ~GQSPI_GFIFO_IMD_MASK;
*gen_fifo_cmd |= GQSPI_GFIFO_EXP_MASK;
*gen_fifo_cmd |= expval;
priv->len -= (1 << expval);
return expval;
}
expval++;
} else {
*gen_fifo_cmd &= ~(GQSPI_GFIFO_IMD_MASK |
GQSPI_GFIFO_EXP_MASK);
*gen_fifo_cmd |= (u8)priv->len;
len = (u8)priv->len;
priv->len = 0;
return len;
}
}
}
static int zynqmp_qspi_genfifo_fill_tx(struct zynqmp_qspi_priv *priv)
{
u32 gen_fifo_cmd;
u32 len;
int ret = 0;
gen_fifo_cmd = zynqmp_qspi_bus_select(priv);
gen_fifo_cmd |= zynqmp_qspi_genfifo_mode(priv->op->data.buswidth);
gen_fifo_cmd |= GQSPI_GFIFO_TX |
GQSPI_GFIFO_DATA_XFR_MASK;
while (priv->len) {
len = zynqmp_qspi_calc_exp(priv, &gen_fifo_cmd);
zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd);
debug("GFIFO_CMD_TX:0x%x\n", gen_fifo_cmd);
if (gen_fifo_cmd & GQSPI_GFIFO_EXP_MASK)
ret = zynqmp_qspi_fill_tx_fifo(priv,
1 << len);
else
ret = zynqmp_qspi_fill_tx_fifo(priv,
len);
if (ret)
return ret;
}
return ret;
}
static int zynqmp_qspi_start_dma(struct zynqmp_qspi_priv *priv,
u32 gen_fifo_cmd, u32 *buf)
{
u32 addr;
u32 size, len;
u32 actuallen = priv->len;
int ret = 0;
struct zynqmp_qspi_dma_regs *dma_regs = priv->dma_regs;
writel((unsigned long)buf, &dma_regs->dmadst);
writel(roundup(priv->len, ARCH_DMA_MINALIGN), &dma_regs->dmasize);
writel(GQSPI_DMA_DST_I_STS_MASK, &dma_regs->dmaier);
addr = (unsigned long)buf;
size = roundup(priv->len, ARCH_DMA_MINALIGN);
flush_dcache_range(addr, addr + size);
while (priv->len) {
len = zynqmp_qspi_calc_exp(priv, &gen_fifo_cmd);
if (!(gen_fifo_cmd & GQSPI_GFIFO_EXP_MASK) &&
(len % ARCH_DMA_MINALIGN)) {
gen_fifo_cmd &= ~GENMASK(7, 0);
gen_fifo_cmd |= roundup(len, ARCH_DMA_MINALIGN);
}
zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd);
debug("GFIFO_CMD_RX:0x%x\n", gen_fifo_cmd);
}
ret = wait_for_bit_le32(&dma_regs->dmaisr, GQSPI_DMA_DST_I_STS_DONE,
1, GQSPI_TIMEOUT, 1);
if (ret) {
printf("DMA Timeout:0x%x\n", readl(&dma_regs->dmaisr));
return -ETIMEDOUT;
}
writel(GQSPI_DMA_DST_I_STS_DONE, &dma_regs->dmaisr);
debug("buf:0x%lx, rxbuf:0x%lx, *buf:0x%x len: 0x%x\n",
(unsigned long)buf, (unsigned long)priv->rx_buf, *buf,
actuallen);
if (buf != priv->rx_buf)
memcpy(priv->rx_buf, buf, actuallen);
return 0;
}
static int zynqmp_qspi_genfifo_fill_rx(struct zynqmp_qspi_priv *priv)
{
u32 gen_fifo_cmd;
u32 *buf;
u32 actuallen = priv->len;
gen_fifo_cmd = zynqmp_qspi_bus_select(priv);
gen_fifo_cmd |= zynqmp_qspi_genfifo_mode(priv->op->data.buswidth);
gen_fifo_cmd |= GQSPI_GFIFO_RX |
GQSPI_GFIFO_DATA_XFR_MASK;
/*
* Check if receive buffer is aligned to 4 byte and length
* is multiples of four byte as we are using dma to receive.
*/
if (!((unsigned long)priv->rx_buf & (GQSPI_DMA_ALIGN - 1)) &&
!(actuallen % GQSPI_DMA_ALIGN)) {
buf = (u32 *)priv->rx_buf;
return zynqmp_qspi_start_dma(priv, gen_fifo_cmd, buf);
}
ALLOC_CACHE_ALIGN_BUFFER(u8, tmp, roundup(priv->len,
GQSPI_DMA_ALIGN));
buf = (u32 *)tmp;
return zynqmp_qspi_start_dma(priv, gen_fifo_cmd, buf);
}
static int zynqmp_qspi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct zynqmp_qspi_regs *regs = priv->regs;
writel(GQSPI_ENABLE_ENABLE_MASK, ®s->enbr);
return 0;
}
static int zynqmp_qspi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct zynqmp_qspi_regs *regs = priv->regs;
writel(~GQSPI_ENABLE_ENABLE_MASK, ®s->enbr);
return 0;
}
static int zynqmp_qspi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct zynqmp_qspi_priv *priv = dev_get_priv(slave->dev->parent);
int ret = 0;
priv->op = op;
priv->tx_buf = op->data.buf.out;
priv->rx_buf = op->data.buf.in;
priv->len = op->data.nbytes;
zynqmp_qspi_chipselect(priv, 1);
/* Send opcode, addr, dummy */
zynqmp_qspi_genfifo_cmd(priv);
/* Request the transfer */
if (op->data.dir == SPI_MEM_DATA_IN)
ret = zynqmp_qspi_genfifo_fill_rx(priv);
else if (op->data.dir == SPI_MEM_DATA_OUT)
ret = zynqmp_qspi_genfifo_fill_tx(priv);
zynqmp_qspi_chipselect(priv, 0);
return ret;
}
static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = {
.exec_op = zynqmp_qspi_exec_op,
};
static const struct dm_spi_ops zynqmp_qspi_ops = {
.claim_bus = zynqmp_qspi_claim_bus,
.release_bus = zynqmp_qspi_release_bus,
.set_speed = zynqmp_qspi_set_speed,
.set_mode = zynqmp_qspi_set_mode,
.mem_ops = &zynqmp_qspi_mem_ops,
};
static const struct udevice_id zynqmp_qspi_ids[] = {
{ .compatible = "xlnx,zynqmp-qspi-1.0" },
{ .compatible = "xlnx,versal-qspi-1.0" },
{ }
};
U_BOOT_DRIVER(zynqmp_qspi) = {
.name = "zynqmp_qspi",
.id = UCLASS_SPI,
.of_match = zynqmp_qspi_ids,
.ops = &zynqmp_qspi_ops,
.of_to_plat = zynqmp_qspi_of_to_plat,
.plat_auto = sizeof(struct zynqmp_qspi_plat),
.priv_auto = sizeof(struct zynqmp_qspi_priv),
.probe = zynqmp_qspi_probe,
};
|