1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
// SPDX-License-Identifier: GPL-2.0+
/*-------------------------------------------------------------------------
* Filename: mini_inflate.c
* Version: $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $
* Copyright: Copyright (C) 2001, Russ Dill
* Author: Russ Dill <Russ.Dill@asu.edu>
* Description: Mini inflate implementation (RFC 1951)
*-----------------------------------------------------------------------*/
#include <config.h>
#include <jffs2/mini_inflate.h>
/* The order that the code lengths in section 3.2.7 are in */
static unsigned char huffman_order[] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5,
11, 4, 12, 3, 13, 2, 14, 1, 15};
static inline void cramfs_memset(int *s, const int c, size n)
{
n--;
for (;n > 0; n--) s[n] = c;
s[0] = c;
}
/* associate a stream with a block of data and reset the stream */
static void init_stream(struct bitstream *stream, unsigned char *data,
void *(*inflate_memcpy)(void *, const void *, size))
{
stream->error = NO_ERROR;
stream->memcpy = inflate_memcpy;
stream->decoded = 0;
stream->data = data;
stream->bit = 0; /* The first bit of the stream is the lsb of the
* first byte */
/* really sorry about all this initialization, think of a better way,
* let me know and it will get cleaned up */
stream->codes.bits = 8;
stream->codes.num_symbols = 19;
stream->codes.lengths = stream->code_lengths;
stream->codes.symbols = stream->code_symbols;
stream->codes.count = stream->code_count;
stream->codes.first = stream->code_first;
stream->codes.pos = stream->code_pos;
stream->lengths.bits = 16;
stream->lengths.num_symbols = 288;
stream->lengths.lengths = stream->length_lengths;
stream->lengths.symbols = stream->length_symbols;
stream->lengths.count = stream->length_count;
stream->lengths.first = stream->length_first;
stream->lengths.pos = stream->length_pos;
stream->distance.bits = 16;
stream->distance.num_symbols = 32;
stream->distance.lengths = stream->distance_lengths;
stream->distance.symbols = stream->distance_symbols;
stream->distance.count = stream->distance_count;
stream->distance.first = stream->distance_first;
stream->distance.pos = stream->distance_pos;
}
/* pull 'bits' bits out of the stream. The last bit pulled it returned as the
* msb. (section 3.1.1)
*/
static inline unsigned long pull_bits(struct bitstream *stream,
const unsigned int bits)
{
unsigned long ret;
int i;
ret = 0;
for (i = 0; i < bits; i++) {
ret += ((*(stream->data) >> stream->bit) & 1) << i;
/* if, before incrementing, we are on bit 7,
* go to the lsb of the next byte */
if (stream->bit++ == 7) {
stream->bit = 0;
stream->data++;
}
}
return ret;
}
static inline int pull_bit(struct bitstream *stream)
{
int ret = ((*(stream->data) >> stream->bit) & 1);
if (stream->bit++ == 7) {
stream->bit = 0;
stream->data++;
}
return ret;
}
/* discard bits up to the next whole byte */
static void discard_bits(struct bitstream *stream)
{
if (stream->bit != 0) {
stream->bit = 0;
stream->data++;
}
}
/* No decompression, the data is all literals (section 3.2.4) */
static void decompress_none(struct bitstream *stream, unsigned char *dest)
{
unsigned int length;
discard_bits(stream);
length = *(stream->data++);
length += *(stream->data++) << 8;
pull_bits(stream, 16); /* throw away the inverse of the size */
stream->decoded += length;
stream->memcpy(dest, stream->data, length);
stream->data += length;
}
/* Read in a symbol from the stream (section 3.2.2) */
static int read_symbol(struct bitstream *stream, struct huffman_set *set)
{
int bits = 0;
int code = 0;
while (!(set->count[bits] && code < set->first[bits] +
set->count[bits])) {
code = (code << 1) + pull_bit(stream);
if (++bits > set->bits) {
/* error decoding (corrupted data?) */
stream->error = CODE_NOT_FOUND;
return -1;
}
}
return set->symbols[set->pos[bits] + code - set->first[bits]];
}
/* decompress a stream of data encoded with the passed length and distance
* huffman codes */
static void decompress_huffman(struct bitstream *stream, unsigned char *dest)
{
struct huffman_set *lengths = &(stream->lengths);
struct huffman_set *distance = &(stream->distance);
int symbol, length, dist, i;
do {
if ((symbol = read_symbol(stream, lengths)) < 0) return;
if (symbol < 256) {
*(dest++) = symbol; /* symbol is a literal */
stream->decoded++;
} else if (symbol > 256) {
/* Determine the length of the repitition
* (section 3.2.5) */
if (symbol < 265) length = symbol - 254;
else if (symbol == 285) length = 258;
else {
length = pull_bits(stream, (symbol - 261) >> 2);
length += (4 << ((symbol - 261) >> 2)) + 3;
length += ((symbol - 1) % 4) <<
((symbol - 261) >> 2);
}
/* Determine how far back to go */
if ((symbol = read_symbol(stream, distance)) < 0)
return;
if (symbol < 4) dist = symbol + 1;
else {
dist = pull_bits(stream, (symbol - 2) >> 1);
dist += (2 << ((symbol - 2) >> 1)) + 1;
dist += (symbol % 2) << ((symbol - 2) >> 1);
}
stream->decoded += length;
for (i = 0; i < length; i++) {
*dest = dest[-dist];
dest++;
}
}
} while (symbol != 256); /* 256 is the end of the data block */
}
/* Fill the lookup tables (section 3.2.2) */
static void fill_code_tables(struct huffman_set *set)
{
int code = 0, i, length;
/* fill in the first code of each bit length, and the pos pointer */
set->pos[0] = 0;
for (i = 1; i < set->bits; i++) {
code = (code + set->count[i - 1]) << 1;
set->first[i] = code;
set->pos[i] = set->pos[i - 1] + set->count[i - 1];
}
/* Fill in the table of symbols in order of their huffman code */
for (i = 0; i < set->num_symbols; i++) {
if ((length = set->lengths[i]))
set->symbols[set->pos[length]++] = i;
}
/* reset the pos pointer */
for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i];
}
static void init_code_tables(struct huffman_set *set)
{
cramfs_memset(set->lengths, 0, set->num_symbols);
cramfs_memset(set->count, 0, set->bits);
cramfs_memset(set->first, 0, set->bits);
}
/* read in the huffman codes for dynamic decoding (section 3.2.7) */
static void decompress_dynamic(struct bitstream *stream, unsigned char *dest)
{
/* I tried my best to minimize the memory footprint here, while still
* keeping up performance. I really dislike the _lengths[] tables, but
* I see no way of eliminating them without a sizable performance
* impact. The first struct table keeps track of stats on each bit
* length. The _length table keeps a record of the bit length of each
* symbol. The _symbols table is for looking up symbols by the huffman
* code (the pos element points to the first place in the symbol table
* where that bit length occurs). I also hate the initization of these
* structs, if someone knows how to compact these, lemme know. */
struct huffman_set *codes = &(stream->codes);
struct huffman_set *lengths = &(stream->lengths);
struct huffman_set *distance = &(stream->distance);
int hlit = pull_bits(stream, 5) + 257;
int hdist = pull_bits(stream, 5) + 1;
int hclen = pull_bits(stream, 4) + 4;
int length, curr_code, symbol, i, last_code;
last_code = 0;
init_code_tables(codes);
init_code_tables(lengths);
init_code_tables(distance);
/* fill in the count of each bit length' as well as the lengths
* table */
for (i = 0; i < hclen; i++) {
length = pull_bits(stream, 3);
codes->lengths[huffman_order[i]] = length;
if (length) codes->count[length]++;
}
fill_code_tables(codes);
/* Do the same for the length codes, being carefull of wrap through
* to the distance table */
curr_code = 0;
while (curr_code < hlit) {
if ((symbol = read_symbol(stream, codes)) < 0) return;
if (symbol == 0) {
curr_code++;
last_code = 0;
} else if (symbol < 16) { /* Literal length */
lengths->lengths[curr_code] = last_code = symbol;
lengths->count[symbol]++;
curr_code++;
} else if (symbol == 16) { /* repeat the last symbol 3 - 6
* times */
length = 3 + pull_bits(stream, 2);
for (;length; length--, curr_code++)
if (curr_code < hlit) {
lengths->lengths[curr_code] =
last_code;
lengths->count[last_code]++;
} else { /* wrap to the distance table */
distance->lengths[curr_code - hlit] =
last_code;
distance->count[last_code]++;
}
} else if (symbol == 17) { /* repeat a bit length 0 */
curr_code += 3 + pull_bits(stream, 3);
last_code = 0;
} else { /* same, but more times */
curr_code += 11 + pull_bits(stream, 7);
last_code = 0;
}
}
fill_code_tables(lengths);
/* Fill the distance table, don't need to worry about wrapthrough
* here */
curr_code -= hlit;
while (curr_code < hdist) {
if ((symbol = read_symbol(stream, codes)) < 0) return;
if (symbol == 0) {
curr_code++;
last_code = 0;
} else if (symbol < 16) {
distance->lengths[curr_code] = last_code = symbol;
distance->count[symbol]++;
curr_code++;
} else if (symbol == 16) {
length = 3 + pull_bits(stream, 2);
for (;length; length--, curr_code++) {
distance->lengths[curr_code] =
last_code;
distance->count[last_code]++;
}
} else if (symbol == 17) {
curr_code += 3 + pull_bits(stream, 3);
last_code = 0;
} else {
curr_code += 11 + pull_bits(stream, 7);
last_code = 0;
}
}
fill_code_tables(distance);
decompress_huffman(stream, dest);
}
/* fill in the length and distance huffman codes for fixed encoding
* (section 3.2.6) */
static void decompress_fixed(struct bitstream *stream, unsigned char *dest)
{
/* let gcc fill in the initial values */
struct huffman_set *lengths = &(stream->lengths);
struct huffman_set *distance = &(stream->distance);
cramfs_memset(lengths->count, 0, 16);
cramfs_memset(lengths->first, 0, 16);
cramfs_memset(lengths->lengths, 8, 144);
cramfs_memset(lengths->lengths + 144, 9, 112);
cramfs_memset(lengths->lengths + 256, 7, 24);
cramfs_memset(lengths->lengths + 280, 8, 8);
lengths->count[7] = 24;
lengths->count[8] = 152;
lengths->count[9] = 112;
cramfs_memset(distance->count, 0, 16);
cramfs_memset(distance->first, 0, 16);
cramfs_memset(distance->lengths, 5, 32);
distance->count[5] = 32;
fill_code_tables(lengths);
fill_code_tables(distance);
decompress_huffman(stream, dest);
}
/* returns the number of bytes decoded, < 0 if there was an error. Note that
* this function assumes that the block starts on a byte boundry
* (non-compliant, but I don't see where this would happen). section 3.2.3 */
long decompress_block(unsigned char *dest, unsigned char *source,
void *(*inflate_memcpy)(void *, const void *, size))
{
int bfinal, btype;
struct bitstream stream;
init_stream(&stream, source, inflate_memcpy);
do {
bfinal = pull_bit(&stream);
btype = pull_bits(&stream, 2);
if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded);
else if (btype == DYNAMIC_COMP)
decompress_dynamic(&stream, dest + stream.decoded);
else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded);
else stream.error = COMP_UNKNOWN;
} while (!bfinal && !stream.error);
#if 0
putstr("decompress_block start\r\n");
putLabeledWord("stream.error = ",stream.error);
putLabeledWord("stream.decoded = ",stream.decoded);
putLabeledWord("dest = ",dest);
putstr("decompress_block end\r\n");
#endif
return stream.error ? -stream.error : stream.decoded;
}
|