aboutsummaryrefslogtreecommitdiff
path: root/nand_spl/nand_boot.c
blob: a136fb707455e0cbd1883fdeeb669827bfe90b3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
 * (C) Copyright 2006
 * Stefan Roese, DENX Software Engineering, sr@denx.de.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <nand.h>

#define CFG_NAND_READ_DELAY \
	{ volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }

extern void board_nand_init(struct nand_chip *nand);
extern void ndfc_hwcontrol(struct mtd_info *mtdinfo, int cmd);
extern void ndfc_write_byte(struct mtd_info *mtdinfo, u_char byte);
extern u_char ndfc_read_byte(struct mtd_info *mtdinfo);
extern int ndfc_dev_ready(struct mtd_info *mtdinfo);
extern int jump_to_ram(ulong delta);
extern int jump_to_uboot(ulong addr);

static int nand_is_bad_block(struct mtd_info *mtd, int block)
{
	struct nand_chip *this = mtd->priv;
	int page_addr = block * CFG_NAND_PAGE_COUNT;

	/* Begin command latch cycle */
	this->hwcontrol(mtd, NAND_CTL_SETCLE);
	this->write_byte(mtd, NAND_CMD_READOOB);
	/* Set ALE and clear CLE to start address cycle */
	this->hwcontrol(mtd, NAND_CTL_CLRCLE);
	this->hwcontrol(mtd, NAND_CTL_SETALE);
	/* Column address */
	this->write_byte(mtd, CFG_NAND_BAD_BLOCK_POS);			/* A[7:0] */
	this->write_byte(mtd, (uchar)(page_addr & 0xff));		/* A[16:9] */
	this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff));	/* A[24:17] */
#ifdef CFG_NAND_4_ADDR_CYCLE
	/* One more address cycle for devices > 32MiB */
	this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f));	/* A[xx:25] */
#endif
	/* Latch in address */
	this->hwcontrol(mtd, NAND_CTL_CLRALE);

	/*
	 * Wait a while for the data to be ready
	 */
	if (this->dev_ready)
		this->dev_ready(mtd);
	else
		CFG_NAND_READ_DELAY;

	/*
	 * Read on byte
	 */
	if (this->read_byte(mtd) != 0xff)
		return 1;

	return 0;
}

static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
{
	struct nand_chip *this = mtd->priv;
	int page_addr = page + block * CFG_NAND_PAGE_COUNT;
	int i;

	/* Begin command latch cycle */
	this->hwcontrol(mtd, NAND_CTL_SETCLE);
	this->write_byte(mtd, NAND_CMD_READ0);
	/* Set ALE and clear CLE to start address cycle */
	this->hwcontrol(mtd, NAND_CTL_CLRCLE);
	this->hwcontrol(mtd, NAND_CTL_SETALE);
	/* Column address */
	this->write_byte(mtd, 0);					/* A[7:0] */
	this->write_byte(mtd, (uchar)(page_addr & 0xff));		/* A[16:9] */
	this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff));	/* A[24:17] */
#ifdef CFG_NAND_4_ADDR_CYCLE
	/* One more address cycle for devices > 32MiB */
	this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f));	/* A[xx:25] */
#endif
	/* Latch in address */
	this->hwcontrol(mtd, NAND_CTL_CLRALE);

	/*
	 * Wait a while for the data to be ready
	 */
	if (this->dev_ready)
		this->dev_ready(mtd);
	else
		CFG_NAND_READ_DELAY;

	/*
	 * Read page into buffer
	 */
	for (i=0; i<CFG_NAND_PAGE_SIZE; i++)
		*dst++ = this->read_byte(mtd);

	return 0;
}

static int nand_load(struct mtd_info *mtd, int offs, int uboot_size, uchar *dst)
{
	int block;
	int blockcopy_count;
	int page;

	/*
	 * offs has to be aligned to a block address!
	 */
	block = offs / CFG_NAND_BLOCK_SIZE;
	blockcopy_count = 0;

	while (blockcopy_count < (uboot_size / CFG_NAND_BLOCK_SIZE)) {
		if (!nand_is_bad_block(mtd, block)) {
			/*
			 * Skip bad blocks
			 */
			for (page = 0; page < CFG_NAND_PAGE_COUNT; page++) {
				nand_read_page(mtd, block, page, dst);
				dst += CFG_NAND_PAGE_SIZE;
			}

			blockcopy_count++;
		}

		block++;
	}

	return 0;
}

void nand_boot(void)
{
	ulong mem_size;
	struct nand_chip nand_chip;
	nand_info_t nand_info;
	int ret;
	void (*uboot)(void);

	/*
	 * Init sdram, so we have access to memory
	 */
	mem_size = initdram(0);

	/*
	 * Init board specific nand support
	 */
	nand_info.priv = &nand_chip;
	nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CFG_NAND_BASE;
	nand_chip.dev_ready = NULL;	/* preset to NULL */
	board_nand_init(&nand_chip);

	/*
	 * Load U-Boot image from NAND into RAM
	 */
	ret = nand_load(&nand_info, CFG_NAND_U_BOOT_OFFS, CFG_NAND_U_BOOT_SIZE,
			(uchar *)CFG_NAND_U_BOOT_DST);

	/*
	 * Jump to U-Boot image
	 */
	uboot = (void (*)(void))CFG_NAND_U_BOOT_START;
	(*uboot)();
}